Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Mandel A. M., Oshurko V. B., Karpova E. E., Solomakho K. G. Quantum shims in a strong magnetic field – carriers of electronic states with controllable quantum numbers. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 2, pp. 167-177. DOI: 10.18500/1817-3020-2025-25-2-167-177, EDN: TGFWME

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.06.2025
Full text:
(downloads: 193)
Language: 
Russian
Article type: 
Article
UDC: 
537.9:538.9:538.915
EDN: 
TGFWME

Quantum shims in a strong magnetic field – carriers of electronic states with controllable quantum numbers

Autors: 
Mandel Arkady Mikhailovich, Moscow State University of Technology "STANKIN"
Oshurko Vadim Borisovich, Moscow State University of Technology "STANKIN"
Karpova Elena Evgenievna, Moscow State University of Technology "STANKIN"
Solomakho Kirill Georgievich, Moscow State University of Technology "STANKIN"
Abstract: 

Background and Objectives: One of the most promising properties of thin quantum rings – their selective properties for localized electrons in a magnetic field – is practically not discussed in the modern literature. Meanwhile, the spectrum of such rings can be reduced to a single stable level, all quantum numbers of which (including spin number) are controlled by the magnetic field. The electronic states of flat thin quantum rings of rectangular cross section, whose thickness h, inner radius Rin and outer radius Rex are related by the relations hRexRinRin, are considered; hereinafter we will call them “quantum shims”. This paper is devoted to select the parameters of a quantum shim so that it holds an electron only in a particular spin state. Materials and Methods: The equations for the radial function, which are of primary physical interest, are obtained by analytically solving the Schrödinger equation for this structure. Results: It has turned out that narrow-gap quantum shims in a wide-gap matrix have the most pronounced and fully controllable selection properties. To keep an electron in such a shim at a single stable level, an external homogeneous magnetic field of strictly defined strength is required. Each set of quantum numbers – radial, orbital and spin – corresponds to a unique value of field strength stabilizing this level. Conclusion: It has been found that this type of narrow-gap heterostructures in a wide-gap matrix can become basic elements for spintronic systems. Their spectrum in an external magnetic field can be reduced to a single stable level, all quantum numbers of which (spin including) are controlled by the external field. We have considered variants of changing the spin state of an electron localized on a shim by a longitudinal magnetic field.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 23-29-00559, https://rscf.ru/prjcard_int?23-29-00559).
Reference: 
  1. Viefers S., Koskinen P., Singha Deo P., Manninen M. Quantum rings for beginners: energy spectra and persistent currents. Physica E, 2004, vol. 21, iss. 1, pp. 1–35. https://doi.org/10.1016/j.physe.2003.08.076
  2. Мanninen M., Viefers S., Reimann S. M. Quantum rings for beginners II: Bosons versus fermions. Physica E, 2012, vol. 46, pp. 119–132. https://doi.org/10.1016/j.physe.2012.09.013
  3. Manolescu A., Daday C., Gudmundsson V. Coulomb and spin-orbit interaction effects in a mesoscopic ring. Nanosystems: Physics, Chemistry, Mathematics, 2011, vol. 2, no. 3, pp. 29–36.
  4. Baran A. V., Kudryashov V. V. Spin-orbit interactions in semiconductor quantum ring in the presence of magnetic field. International Journal of Nanoscience, 2019, vol. 18, no. 3–4, art. 1940016. https://doi.org/10.1142/S0219581X19400167
  5. Kammermeier M., Seith A., Wenk P., Schliemann J. Persistent spin textures and currents in wurtzite nanowire-based quantum structures. Phys. Rev. B, 2020, vol. 101, no. 19, art. 195418. https://doi.org/10.1103/PhysRevB.101.195418
  6. Li B., Magnus W., Peeters F. M. Tunable exciton Aharonov-Bohm effect oin a quantum ring. Journal of Physics: Conference Series, 2010, vol. 210, no. 1, art. 012030. https://doi.org/10.1088/1742-6596/210/1/012030
  7. Lia J. M., Tamborenea P. I. Narrow quantum rings with general Rashba and Dresselhaus spin-orbit interaction. Physica E, 2020, vol. 126, art. 114419. https://doi.org/10.1016/j.physe.2020.114419
  8. Kozin V. K., Iorsh I. V., Kibis O. V., Shelykh I. A. Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator. Phys. Rev. B, 2018, vol. 97, no.3, art. 035416. https://doi.org/10.1103/PhysRevB.97.035416
  9. De Lira F. A. G., Pereira L. F. C., Silva E. O. Study on the effects of anisotropic effective mass on electronic properties, magnetization and persistent current in semiconductor quantum ring with conical geometry. Physica E, 2021, vol. 132, art. 114760. https://doi.org/10.1016/j.physe.2021.114760
  10. Sullivan H. T., Cole J. H. A link between shape dependent lifetimes and thermal escape in quantum dots and rings. Physical Review Research, 2024, vol. 6, art. 013086. https://doi.org/10.1103/PhysRevResearch.6.013086
  11. Panneerselvam K., Muralidharan B. Giant excitonic magneto-optical Faraday rotation in single semimagnetic CdTe/Cd1-xMnxTe quantum ring. Physica E, 2024, vol. 157, art. 115876. https://doi.org/10.1016/j.physe.2023.115876
  12. Rubo Y. G. Spin-orbital effect on polariton state in traps. Phys. Rev. B, 2022, vol. 106, art. 235306. https://doi.org/10.1103/PhysRevB.106.235306
  13. Planelles J., Movilla J. L., Climente J. I. Topological magnetoelectric effect in semiconductor nanostructures: Quantum wells, wires, dots, and rings. Phys. Rev. Research, 2023, vol. 5, art. 023119. https://doi.org/10.1103/PhysRevResearch.5.023119
  14. Blackman N., Genov D. A. Temperature dependent diamagnetic-paramagnetic transitions in metal/semiconductor quantum rings. Phys. Rev. B, 2020, vol. 102, art. 245429. https://doi.org/10.1103/PhysRevB.102.245429
  15. Gioia L., Zülicke U., Governale M., Winkler R. Dirac electrons in quantum rings. Phys. Rev. B, 2018, vol. 97, art. 205421. https://doi.org/10.1103/PhysRevB.97.205421
  16. Chakraborty T., Manaselyan A., Barseghyan M. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring. J. Phys.: Condens. Matter, 2016, vol. 29, no. 7, art. 075605. https://doi.org/10.1088/1361-648X/aa5168
  17. Ledentsov V. M., Ustinov V. M., Shchukin V. A., Kop’ev P. S., Alferov Zh. I., Bimberg D. Quantum dot heterostructures: Fabrication, properties, lasers. Semiconductors, 1998, vol.32, iss. 4, pp. 343–365. https://doi.org/10.1134/1/1187396
  18. Mandel A. M., Oshurko V. B., Karpova E. E. Renormalization of the Landé factor and effective mass in small spherical quantum dots. Journal of Communications Technology and Electronics, 2019, vol. 64, pp. 1127–1134. https://doi.org/10.1134/S1064226919100085
  19. Mandel A. M., Oshurko V. B., Pershin S. M. A thin semiconductor quantum ring as an analog of a magnetically controlled Bohr Atom. Doklady Physics, 2021, vol. 66, no. 9, pp. 253–256. https://doi.org/10.1134/S1028335821090020
  20. Rodionov V. N., Kravtsova G., Mandel A. M. On the influence of strong electric and magnetic fields on spatial dispersion and anisotropy of optical properties of semiconductor. JETP Letters, 2003, vol. 78, iss. 4, pp. 218–222. https://doi.org/10.1134/1.1622035
  21. Baz A. I., Zeldovich Ya. B., Perelomov A. M. Rasseianie, reaktsii i raspady v nereliativistskoi kvantovoi mekhanike [Scattering, reactions and decays in non-relativistic quantum mechanics]. Moscow, Nauka, 1971. 544 p. (in Russian).
  22. Rodionov V. N., Kravtsova G. A., Mandel A. M. Ionization from a short-range potential under the action of electromagnetic fields of complex configuration. JETP Letters, 2002, vol. 75, iss. 8, pp. 363–467. https://doi.org/10.1134/1.1490000
  23. Rodionov V. N., Kravtsova G. A., Mandel A. M. Lack of stabilization of quasi-stationary states of the electron in a strong magnetic field. Doklady Physics, 2002, vol. 386, no. 1, pp. 725–727. https://doi.org/10.1134/1.1519315
  24. Vurgaftman I., Meyer J. R., Ram-Mohan L. R. Band parameters for III–V compound semiconductors and their allous. J. Appl. Phys., 2001, vol. 89, iss. 11, pp. 5815–5875. https://doi.org/10.1063/1.1368156
  25. Aleshkin V. Ya., Gavrilenko V. I., Ikonnikov A. V., Krishtopenko S. S., Sadofyev Yu. G., Spirin K. E. Exchange enhancement of g-factor in InAs/AlSb heterostructures. Semiconductors, 2008, vol. 42, iss. 7, pp. 828–833. https://doi.org/10.1134/S1063782608070129
Received: 
30.10.2024
Accepted: 
17.02.2025
Published: 
30.06.2025