Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Shegolev S. U. Processing and Visualization of Large Data Arrays in Taxonomic and Evolutionary Studies of Living Nature1 (a review). Izvestiya of Saratov University. Physics , 2016, vol. 16, iss. 3, pp. 145-167. DOI: 10.18500/1817-3020-2016-16-3-145-167

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 240)
Language: 
Russian
UDC: 
575.8 + 524.8

Processing and Visualization of Large Data Arrays in Taxonomic and Evolutionary Studies of Living Nature1 (a review)

Autors: 
Shegolev Sergey Urevich, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Abstract: 

A review is given of recent advances in the taxonomic study of organisms and current views on biological evolution and the origin of life. The steady increase in bioinformation resources is noted, which reflects the results of studies of the Earth’s biodiversity with the use of deciphered structures of biomacromolecules (DNA, RNA, proteins, etc.). This necessitates accounting for the specific character of manipulations with large data arrays, which is currently termed the big data problem. The contributions of the treelike and net components to the topology of phylogenetic constructs are discussed, with consideration for the prevailing role of horizontal gene transfer in prokaryote evolution and life. Approaches are described to the practical use of 16S rRNA gene DNA sequences in diverse biomedical (including metagenomic) applications with traditional and nontraditional (large) amounts of molecular genetic data. Emerging results from molecular taxonomic studies of the Earth’s biota and the methods of their generation are demonstrated. The significance is noted of the current developments in particle physics and in cosmology for solving paradoxes associated with the vanishingly small probability of some fundamental processes of prebiological and biological evolution. The basis for this approach, in which the origin and evolution of life is treated as a cosmological phenomenon, is provided by the inflation theory of the origin and evolution of the observable universe, which leads to the multiverse concept, explaining the paradoxes pointed out above.

Reference: 
  1. Lesk A.M. Introduction to bioinformatics. Fourth edition. Oxford: Oxford University Press, 2014. 400 p.
  2. Ogurtsov A.N. Osnovy bioinformatiki: ucheb. posobie [Essential Bioinformatics: A Handbook]. Khar’kov, NTU “KhPI”, 2013. 400 p. (in Russian).
  3. Bio–Linux Overview. Available at: http://environmentalomics.org/bio-linux (accessed 15.04.2016).
  4. Unipro UGENE. Available at: http://ugene.net/ru (accessed 15 April 2016).
  5. Bioinformatics Institute. Available at: http://bioinformaticsinstitute.ru (accessed 15 April 2016) (in Russian).
  6. Human Genome Project Information Archive 1990–2003. Available at: http://web.ornl.gov/sci/techresources/Human_Genome/project/info.shtml (accessed 15 April 2016).
  7. Koonin E. V. Logika sluchaya. O prirode i proiskhozhdenii biologicheskoj ehvolyucii [The Logic of Chance: the Nature and Origin of Biological Evolution]. Moscow, Tsentrpoligraf, 2014. 527 p. (in Russian).
  8. Linde A. A brief history of the multiverse. arXiv:- 1512.01203v1 [hep-th] 3 Dec 2015. Available at: http://arxiv.org/abs/1512.01203 (accessed 15 April 2016).
  9. Vilenkin A. Mir mnogih mirov: Fiziki v poiskah parallel’nyh vselennyh [Many Worlds in One. The Search for Other Universes]. Moscow, Astrel’, CORPUS, 2010. 303 p. (in Russian).
  10. Susskind L. Kosmicheskij landshaft. Teoriya strun i illyuziya razumnogo zamysla Vselennoj [The Cosmic Landscape: String Theory and the Illusion of Intelligent Design]. St.-Petersburg, Piter, 2015. 448 p. (in Russian).
  11. Costello M. J., May R. M., Stork N. E. Can we name Earth’s species before they go extinct? Science. 2013, vol. 339, pp. 413–416.
  12. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. PNAS, 1990, vol. 87, pp. 4576–4579.
  13. File: Biological classifi cation L Pengo.svg. Available at: https://commons.wikimedia.org/wiki/File:Biological_classification_L_Peng... (accessed 15 April 2016).
  14. Mora C., Tittensor D. P., Adl S., Simpson A. G. B., Worm B. How many species are there on Earth and in the Ocean? PLoS Biology, 2011, vol. 9, no. 8, e1001127.
  15. Global biodiversity. Available at: https://en.wikipedia.org/wiki/Global_biodiversity (accessed 15 April 2016).
  16. NIST Big Data Program. Available at: http://bigdatawg.nist.gov/home.php (accessed 15 April 2016).
  17. Zhulin I. B. Databases for microbiologists. J. Bacteriol., 2015, vol. 197, pp. 2458–2467.
  18. Ruan Y., Ekanayake S., Rho M., Tang H., Bae S.-H., Qiu J., Fox G. DACIDR: deterministic annealed clustering with interpolative dimension reduction using a large collection of 16S rRNA sequences. BCB’12. Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine. New York: ACM New York, 2012, pp. 329–336.
  19. Page from Darwin’s notebooks around July 1837 showing his fi rst sketch of an evolutionary tree. Available at: https://en.wikipedia.org/wiki/Tree_of_life_(biology)#/media/File:Darwin_Tree_1837.png (accessed 15 April 2016).
  20. Fraser-Liggett C. M. Insights on biology and evolution from microbial genome sequencing Genome Res., 2005, vol. 15, no. 12, pp. 1603–1610.
  21. Woese C. R. Bacterial evolution. Microbiol. Rev. 1987, vol. 51, pp. 221–271.
  22. Woese C. R. On the evolution of cells. PNAS. 2002, vol. 99, no. 13, pp. 8742–8747.
  23. Doolittle W. F. Phylogenetic classifi cation and the universal tree. Science, 1999, vol. 284, no. 5423, pp. 2124–2129.
  24. Coenye T., Gevers D., Van de Peer Y., Vandamme P., Swings J. Towards a prokaryotic genomic taxonomy. FEMS Microbiol. Rev., 2005, vol. 29, pp. 147–167.
  25. Puigbo P., Wolf Y. I., Koonin E. V. Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J. Biol., 2009, vol. 8, no. 59, pp. 1–17.
  26. Davison M. Mnogomernoe shkalirovanie: metody nagljadnogo predstavlenija dannyh [Multidimensional Scaling: Methods of Visual Data Presentation]. Moscow, Finansy i statistika, 1988. 254 p. (in Russian).
  27. Aivazian S. A., Bukhshtaber V. M., Eniukov I. S., Meshalkin L. D. Prikladnaja statistika. Klassifikacija i snizhenie razmernosti [Applied Statistics: Classifi cation and Reduction of Dimensionality]. Moscow, Finansy i statistika, 1989. 607 p. (in Russian).
  28. Borg I., Groenen P. Modern multidimensional scaling: theory and applications.2nd ed. New York, SpringerVerlag, 2005, pp. 207–212.
  29. Doolittle W. F. Uprooting the tree of life. Sci. Am., 2000, vol. 282, no. 2, pp. 90–95.
  30. Margelis L. Rol’ simbioza v jevoljucii kletki [Role of Symbiosis in Cell Evolution]. Moscow, Mir, 1983. 352 p. (in Russian).
  31. Markov A. V., Kulikov A. M. Origin of Eukaryota: Proishozhdenie jevkariot: vyvody iz analiza belkovyh gomologij v treh nadcarstvah zhivoj prirody [Conclusions based on the analysis of protein homologies in the three superkingdoms]. Paleontol. J., 2005, no. 4, p. 3 (in Russian).
  32. Rivera M. C., Lake J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes // Nature, 2004, vol. 431, no. 9, pp. 152–155.
  33. Carroll S. Prisposobit’sja i vyzhit’! DNK kak letopis’ jevoljucii [To Adapt and Survive! DNA as a Record of Evolution]. Мoscow, АСТ, CORPUS, 2015. 384 p. (in Russian).
  34. Shchyogolev S. Yu., Burygin G. L., Popova I. A., Matora L. Yu. Aktual’nye problemy molekuljarno-geneticheskoj identifi kacii prokariot [Topical problems in the molecular genetic identification of prokaryotes]. Vserossiiskaia nauchnaia konferentsiia s mezhdunarodnym uchastiem «Perspektivy razvitiia khimicheskikh i biologicheskikh tekhnologii v 21-m veke»: materialy [All-Russia Scientifi c Conference with International Participation «Prospects for the Development of Chemical and Biological Technologies in the 21st Century»: proceedings]. Saransk, Referent, 2015, pp. 132–137 (in Russian).
  35. Tkachenko O. V., Evseeva N. V., Boikova N. V., Matora L. Yu., Burygin G. L., Lobachev Y. V., Shchyogolev S. Yu. Improved potato microclonal reproduction with the plant growth–promoting rhizobacteria Azospirillum. Agron. Sustain. Dev., 2015, vol. 35, pp. 1167–1174.
  36. Taxonomic Group. Available at: http://www.ezbiocloud.net/eztaxon/taxonomic_group (accessed 15 April 2016).
  37. Oren A., Garrity G. M. Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie van Leeuwenhoek, 2014, vol. 106, pp. 43–56.
  38. Trujillo M. E., Willems A., Abril A., Planchuelo A.-M., Rivas R., Ludeña D., Mateos P. F., Martínez-Molina E., Velázquez E. Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. Nov. Appl. Environ. Microbiol., 2005, vol. 71, no. 3, pp. 1318–1327.
  39. Biteen J. S., Blainey P. C., Cardon Z. G., Chun M., Church G. M., Dorrestein P. C., Fraser S. E., Gilbert J. A., Jansson J. K., Knight R., Miller J. F., Ozcan A., Prather K. A., Quake S. R., Ruby E. G., Silver P. A., Taha S., van den Engh G., Weiss P. S., Wong G. C. L., Wright A. T., Young T. D. Tools for the microbiome: nano and beyond. ACS Nano, 2016, vol. 10, no. 1, pp. 6–37.
  40. Chakravorty S., Helb D., Burday M., Connell N., Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Met., 2007, vol. 69, no. 2, pp. 330–339.
  41. Chun J., Rainey F. A. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 316–324.
  42. You are welcome to download the following graphic image of the Tree of Life for non–commercial, educational purposes. Available at: http://www.zo.utexas.edu/faculty/antisense/downloadfilestol.html (accessed 15 April 2016).
  43. Three dimensional overview of Bacterial and Archaeal diversity. Available at: http://www.ezbiocloud.net/ezgenome/status (accessed 15 April 2016).
  44. Million Sequence Clustering. Available at: http://salsahpc.indiana.edu/millionseq/mina/16SrRNA_index.html (accessed 15 April 2016).
  45. Chen W., Zhang C.K., Cheng Y., Zhang S., Zhao H. A comparison of methods for clustering 16S rRNA sequences into OTUs. PLOS ONE, 2013, vol. 8, no. 8, e70837.
  46. Binning 16S rRNA sequences (metagenomic analysis). Available at: http://omictools.com/binning-16s-datasetscategory (accessed 15 April 2016).
  47. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, vol. 486, no. 7402, pp. 207–214.
  48. The Human Microbiome Project Consortium. A framework for human microbiome. Nature, 2012, vol. 486, no. 7402, pp. 215–221.
  49. The Human Microbiome. Available at: http://hmpdacc.org/overview/about.php (accessed 15 April 2016).
  50. The Human Microbiome Project. Research Articles. Available at: http://collections.plos.org/hmp (accessed 15 April 2016).
  51. Hug L. A., Baker B. J., Anantharaman K., Brown C. T., Probst A. J., Castelle C. J., Butterfi eld C. N., Hernsdorf A. W., Amano Y., Ise K., Suzuki Y., Dudek N., Relman D. A., Finstad K. M., Amundson R., Thomas B. C., Banfi eld J. F. A new view of the tree of life. Nat. Microbiol., 2016. Article number: 16048, pp. 1–6. Available at: http://www.nature.com/articles/nmicrobiol201648 (accessed 15 April 2016).
  52. CIPRES. Cyber infrastructure for Phylogenetic Research. Available at: http://www.phylo.org/sub_sections/portal (accessed 15 April 2016).
  53. Shchyogolev S. Yu. Sovremennye vzgljady na jevoljuciju : o roli gorizontal’nogo perenosa genov [Current views of evolution: on the role of horizontal gene transfer]. Izvestiya VUZ. AND, 2013, vol. 21, no. 4, pp. 43–76. Available at: http://ibppm.ru/konferencii/page/2 (in Russian).
  54. Gilbert W. Origin of life: The RNA world. Nature, 1986, vol. 319, no. 6055, p. 618.
  55. Spirin A. S. Biosintez belkov, mir RNK i proishozhdenie zhizni [Protein biosynthesis, the world of RNA, and the origin of life]. Herald Russ. Acad. Sci., 2001, vol. 71, no. 4, pp. 320–328.
  56. Bakterial’naja paleontologija [Bacterial Paleontology]. Ed. by A.Iu. Rozanov. Moscow, PIN RAN, 2002. 188 p. (in Russian).
  57. Sharov A. A. Genetic gradualism and the extraterrestrial origin of life // J. Cosmol., 2010, vol. 5, pp. 833–842.
  58. Stenger V. Bog i Mul’tivselennaja. Rasshirennoe ponjatie kosmosa [God and the Multiverse: Humanity’s Expanding View of the Cosmos]. St.-Petersburg, Piter, 2016. 432 p. (in Russian).
  59. Rozanov A. Y. Kogda pojavilas’ zhizn’ na Zemle? [When did life appear on the Earth?] Herald Russ. Acad. Sci., 2010, vol. 80, no. 5–6, pp. 533–541 (in Russian).
  60. Darwin C. Proishozhdenie vidov putem estestvennogo otbora ili sohranenie blagoprijatnyh ras v bor’be za zhizn’ [The Origin of Species by means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life]. 2nd ed., expanded. St.-Petersburg, Nauka, 2001. 568 p. (in Russian).
  61. Sharov A. A. Genome increase as a clock for the origin and evolution of life. Biol. Dir., 2006, vol. 1, no. 17, pp. 1–10.
  62. Koonin E. V. The cosmological model of eternal infl ation and the transition from chance to biological evolution in the history of life. Biol. Dir., 2007, vol. 2, no. 15, pp. 1–21.
  63. Klimontovich Yu. L. Vvedenie v fi ziku otkrytyh sistem [Introduction to physics of open systems]. Soros Educ. J., 1996, no. 8, pp. 109–116 (in Russian).
  64. Johnson A. P., Cleaves H. J., Dworkin J. P., Glavin D. P., Lazcano A., Bada J. L. The Miller volcanic spark discharge experiment. Science, 2008, vol. 322, no. 5900, p. 404.
  65. Parker D. S. N., Kaiser R. I., Kostko O., Troy T. P., Ahmed M., Mebel A. M., Tielens A. G. G. M. Gas phase synthesis of (iso)quinoline and its role in the formation of nucleobases in the interstellar medium. Astrophys. J., 2015, vol. 803, no. 2, pp. 53–62.
  66. Linde A. D. Fizika jelementarnyh chastic i infl jacionnaja kosmologija [Particle physics and infl ationary cosmology]. Moscow, Nauka, 1990. 280 p. (in Russian).
  67. Carter B. Large number coincidences and the anthropic principle in cosmology. Confrontation of cosmological theories with observational data: IAU Symposium 63. Dordrecht: Reidel, 1974, pp. 291–298. Russ. ed.: Carter B. Large number coincidences and the anthropic principle in cosmology. Kosmologiia. Teorii i nabliudeniia [Cosmology. Theories and Observations]. Moscow, Mir, 1978, pp. 369–380.
  68. Weinberg S. Anthropic bound on the cosmological constant. Phys. Rev. Lett., 1987, vol. 59, no. 22, pp. 2607– 2610.
  69. Boltzmann L. Lekcii po teorii gazov [Lectures on gas theory]. Moscow, Gostekhizdat, 1953, 555 p. (in Russian).
  70. Linde A. D. Chaotic inflation. Phys. Lett., 1983, vol. B 129, no. 3–4, pp. 177–181.
  71. Linde A. Inflationary cosmology after Planck 2013. arXiv:1402.0526v2 [hep–th] 9 Mar 2014. Available at: http://arxiv.org/abs/1402.0526 (accessed 15 April 2016).
  72. Starobinskii A. A. Spektr reliktovogo gravitacionnogo izluchenija i nachal’noe sostojanie vselennoj [Spectrum of relic gravitational radiation and the initial state of the universe]. JETP Lett., 1979, vol. 30, no. 11, pp. 719–723 (in Russian).
  73. Guth A. H. Infl ationary universe: A possible solution to the horizon and fi atness problems. Phys. Rev., 1981, vol. D 23, no. 2, pp. 347–356.
  74. Linde A. D. A new infl ationary universe scenario: a possible solution of the horizon, fl atness, homogeneity, isotropy and primordial monopole problems. Phys. Lett., 1982, vol. B 108, no. 2, pp. 389–393.
  75. 2014 LAUREATES. Available at: http://www.kavliprize.org (accessed 15 April 2016).
  76. Linde A., Linde D., Mezhlumian A. From the big bang theory to the theory of a stationary universe. Phys. Rev., 1994, vol. D 49, no. 4, pp. 1783–1826.
  77. Timeline of the Universe. Available at: http://map.gsfc.nasa.gov/media/060915/index.html (accessed 15 April 2016).
  78. Mukhanov V. F., Chibisov G.V. Kvantovye fl uktuacii i «nesinguljarnaja» vselennaja [Quantum fl uctuations and a nonsingular universe]. JETP Lett., 1981, vol. 33, no. 10, pp. 549–553 (in Russian).
  79. Mukhanov V. F. Gravitacionnaja neustojchivost’ vo vselennoj, zapolnennoj skaljarnym polem [Gravitational instability of the universe fi lled with a scalar fi eld]. JETP Lett., 1985, Vol. 41, no. 9, pp. 402–405 (in Russian).
  80. Vilenkin A., Ford L. H. Gravitational effects upon cosmological phase transitions. Phys. Rev., 1982, vol. D 26, no. 6, pp. 1231–1241.
  81. Linde A. D. Scalar fi eld fl uctuations in the expanding universe and the new infl ationary universe scenario. Phys. Lett., 1982, vol. B116, no. 5, pp. 335–339.
  82. LIGO. Laser Interferometer Gravitational-Wave Observatory. Available at: https://www.ligo.caltech.edu/detection (accessed 15 April 2016).
  83. Krauss L. М. A beacon from the Big Bang. Sci. Amer., 2014, vol. 311, no. 4, pp. 58–67. Translation: Krauss L. A beacon from the Big Bang. V mire nauki, 2014, no. 12, pp. 22–32.
  84. Albrecht A., Steinhardt P. J. Cosmology for grand unifi ed theories with radiatively induced symmetry breaking. Phys. Rev. Lett., 1982, vol. 48, no. 17, pp. 1220–1223.
  85. Guth A. H. Infl ation and the new era of high–precision cosmology. MIT Phys. Ann., 2002, pp. 28–39. Available at: http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf (accessed 15 April 2016).
  86. Krauss L. М., Turner M. S. The cosmological constant is back. Gen. Relativ. Gravitation, 1995, vol. 27, no. 11, pp. 1137–1144.
  87. Riess A. G., Filippenko A. V., Challis P., Clocchiatti A., Diercks A., Garnavich P. M., Gilliland R., Hogan C. J., Jha S., Kirshner R. P., Leibundgut B., Phillips M. M., Reiss D., Schmidt B. P., Schommer R. A., Smith R. C., Spyromilio J., Stubbs C., Suntzeff N. B., Tonry J. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 1998, vol. 116, no. 3, pp. 1009–1038.
  88. Greene B. Tkan’ kosmosa : Prostranstvo, vremja i tekstura real’nosti [The fabric of the cosmos: Space, time, and the texture of reality]. Moscow, URSS, LENAND, 2015. 608 p. (in Russian).
  89. What is the Universe made of? Available at: http://map.gsfc.nasa.gov/universe/uni_matter.html (accessed 15 April 2016).
  90. Surdin V. G., Zasov A. V. Galaktiki: klassifi kacija, struktura, naselenie [Galaxies: Classifi cation, structure, population]. Galaktiki [Galaxies]. Ed. by V. G. Surdin. Moscow, FIZMATLIT, 2013, pp. 208–310 (in Russian).
  91. Surdin V. G. Vselennaja ot A do Ja [The universe from A to Z]. Moscow, Eksmo, 2013. 480 p. (in Russian).
  92. Linde A. Particle physics and infl ationary cosmology. Phys. Today, 1987, vol. 40, no. 9, pp. 61–68.
  93. Planck Collaboration. Planck 2013 results. XXII. Constraints on infl ation. arXiv:1303.5082v3 [astro-ph.CO] 3 Feb 2015. http://arxiv.org/abs/1303.5082 (accessed 15 April 2016).
Краткое содержание:
(downloads: 171)