Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Stetsyura S. V., Kharitonova P. G., Kozlowski A. V. Perspectives for the creation and application of heterophase material CdS-FeS obtained by the Langmuir–Blodgett method. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 1, pp. 93-105. DOI: 10.18500/1817-3020-2025-25-1-93-105, EDN: QNRMSZ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.03.2025
Full text:
(downloads: 14)
Language: 
Russian
Article type: 
Article
UDC: 
620.3:29.19.31
EDN: 
QNRMSZ

Perspectives for the creation and application of heterophase material CdS-FeS obtained by the Langmuir–Blodgett method

Autors: 
Stetsyura Svetlana Viktorovna, Saratov State University
Kharitonova Polina G., Saratov State University
Kozlowski Alexander V., Saratov State University
Abstract: 

Background and Objectives: Cadmium sulfide (CdS) is one of the most promising materials for photovoltaic devices, but it is increasingly used as part of complex heterostructures and heterophase materials that provide expanded functionality and perspective for use. This article presents the results of studies on the production of semi-magnetic semiconductor material CdS-FeS, conventionally designated CdS:Fe, using the Langmuir–Blodgett technology. The morphology of the surface layers and the photoelectric characteristics of the obtained material are considered in detail in comparison with the original sample. Methods: A nanosized coating of iron arachinate (ArchFe) was prepared on the surface of CdS using the Langmuir–Blodgett method. The parameters of ArchFe monolayers were controlled using compression isotherms. The CdS/ArchFe structure was annealed in air. Energy-dispersive analysis and mass spectrometric studies were carried out to control the current processes before and after annealing. The main methods for studying hybrid structures of CdS/ArchFe and heterophase material CdS:Fe were atomic force microscopy and analysis of photoelectric characteristics using steady-state and kinetic approaches. Results: The resulting material is a matrix of CdxFe1–xS solid solution with nanoinclusions of the FeS phase. Analysis of atomic force microscopy images has confirmed the high reproducibility of the proposed method. We have shown the occurrence of the effect of “negative photofatigue” and an increase in integral photosensitivity by 70 times for a heterophase sample compared to “pure” CdS. Conclusion: It has been shown that the resulting material has unique properties, such as increased photosensitivity and negative photofatigue, which is very perspective for creating devices that can operate in conditions high illumination and whose characteristics can be controlled by illumination.

Acknowledgments: 
This study was supported by the Russian Science Foundation (project No. 22-22-00194, https://rscf.ru/en/project/22-22-00194/).
Reference: 
  1. Rokakh A. G. Sublimated Photoconductive Films of CdS Type: History and Modernity. Izvestiya of Saratov University. Physics, 2015, vol. 15, iss. 2, pp. 53–58 (in Russian). https://doi.org/10.18500/1817-3020-2015-15-2-53-58
  2. Singh V. P., Singh R. S., Sampson K. E. Chapter 6. Thin-Film Solar Cells Based on Nanostructured CdS, CIS, CdTe and Cu2S. In: Tetsuo Soga, ed. Nanostructured Materials for Solar Energy Conversion. Elsevier, 2006, pp. 167–190. https://doi.org/10.1016/B978-044452844-5/50007-X
  3. Hao E., Sun H., Zhou Z., Liu J., Yang B., Shen J. Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles. Chemistry of Materials, 1999, vol. 11, iss. 11, pp. 3096–3102. https://doi.org/10.1021/cm990153p
  4. Obaid A. S., Mahdi M. A., Hassan Z. Preparation of chemically deposited thin films of CdS/PbS solar cell. Superlatties and Microstructures, 2012, vol. 52, iss. 4, pp. 816–823. https://doi.org/10.1016/j.spmi.2012.06.024
  5. Salmanov V. M., Guseinov A. G., Jafarov M. A. Mamedov R. M., Mamedova T. A. Features of photoconductivity and luminescence of CdS thin films and Cd1−xZnxS solid solutions under laser excitation. Optics and Spectroscopy, 2022, vol. 130, iss. 10, pp. 1308–1311. https://doi.org/10.21883/eos.2022.10.54868.2983-22
  6. Maskaeva L. N., Fedorova E. A., Markov V. F. Tekhnologiia tonkikh plenok i pokrytii: ucheb. posobie [Maskaeva L. N., ed. Technology of thin films and coatings: A study guide]. Ekaterinburg, Ural University Publ., 2019. 236 p. (in Russian).
  7. Smirnov B. M. Metal nanostructures: From clusters to nanocatalysis and sensors. Physics-Uspekhi, 2017, vol. 60, no. 1, pp. 1236–1267 (in Russian). https://doi.org/10.3367/UFNe.2017.02.038073
  8. Nabok A. V., Richardson T., Davis F., Stirling C. J. M. Cadmium sulfide nanoparticles in Langmuir−Blodgett films of calixarenes. Langmuir, 1997, vol. 13, iss. 12, pp. 3198–3201. https://doi.org/10.1021/la962115f
  9. Li L., Lou Z., Shen G. Hierarchical CdS Nanowires Based Rigid and Flexible Photodetectors with Ultrahigh Sensitivity. ACS Applied Materials & Interfaces, 2015, vol. 7, iss. 42, pp. 23507–23514. https://doi.org/10.1021/acsami.5b06070
  10. Hwang I., Yong K. Novel CdS Hole-Blocking Layer for Photostable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, vol. 8, iss. 6, pp. 4226–4232. https://doi.org/10.1021/acsami.5b12336
  11. Halge D. I., Narwade V. N., Khanzode P. M., Dadge J. W., Banerjee I., Bogle K. A. Enhancement in Visible Light Photoresponse of CdS Thin Films by Nitrocellulose Surface Passivation. ACS Applied Electronic Materials, 2020, vol. 2, iss. 7, pp. 2151–2154. https://doi.org/10.1021/acsaelm.0c00361
  12. Hernadez-Borja J., Vorobiev Y. V., Ramirez-Bon R. Thin films solar cells of CdS/PbS chemically deposited by an ammonia – free process. Solar Energy Materials and Solar Cells, 2011, vol. 95, iss. 7, pp. 1882–1888. https://doi.org/10.1016/j.solmat.2011.02.012
  13. Stetsyura S. V., Kharitonova P. G., Malyar I. V. Semimagnetic film coating based on a photosensitive semiconductor. Applied Physics, 2020, no. 5, pp. 66–72.
  14. Nikitin P. I., Savchuk A. I. The Faraday effect in semimagnetic semiconductors. Soviet Physics Uspekhi, 1990, vol. 33, no. 1, pp. 974–989 (in Russian). https://doi.org/10.1070/PU1990v033n11ABEH002659
  15. Mel’nichuk S. V., Nikitin P. I., Savchuk A. I., Trifonenko D. N. Faraday effect in semimagnetic Cd1−xFexTe semiconductor. Semiconductors, 1996, vol. 30, no. 1, pp. 959–961.
  16. Stetsyura S. V., Kharitonova P. G. Magnetic properties of heterophase film coatings based on a solid solution of cadmium sulfide and iron. St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2023, vol. 16, no. 1.2, pp. 236–240. https://doi.org/10.18721/JPM.161.236
  17. Ekrami M., Magna G., Emam-Djomeh Z., Saeed Yarmand M., Paolesse R., Di Natale C. Porphyrin-Functionalized Zinc Oxide Nanostructures for Sensor Applications. Sensors, 2018, vol. 18, iss. 7, art. 2279. https://doi.org/10.3390/s18072279
  18. Stetsyura S. V., Kharitonova P. G., Glukhovskoy E. G. Langmuir–Blodgett technology to obtain semi-magnetic photosensitive materials. St. Petersburg State Polytechnical University Journal: Physics and Mathematics, 2022, vol. 15, iss. 3.3, pp. 250–254. https://doi.org/10.18721/JPM.153.349
  19. Kharitonova P. G., Glukhovskoy E. G., Kozlowski A. V., Stetsyura S. V. Photoelectric characteristics and surface morphology of cadmium sulfide modified by iron arachinate. Semiconductors, 2023, vol. 57, iss. 7, pp. 510–513. https://doi.org/10.61011/SC.2023.07.57411.4912C
  20. Kanicky J. R., Shah D. O. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. Journal of Colloid and Interface Science, 2002, vol. 256, iss. 1, pp. 201–207. https://doi.org/10.1006/jcis.2001.8009
  21. Hwan Ha T., Kyu Kim D, Choi M. U., Kim K. Influence of Poly(ethylenimine) on the Monolayer of Oleic Acid at the Air/Water Interface. Journal of Colloid and Interface Science, 2000, vol. 226, iss. 1, pp. 98–104. https://doi.org/10.1006/jcis.2000.6819
  22. Khomutov G. B., Bykov I. V., Gainutdinov R. V., Polyakov S. N., Sergeyev-Cherenkov A. N., Tolstikhina A. L. Synthesis of Ni-containing nanoparticles in Langmuiur–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, vol. 198–200, pp. 559–567. https://doi.org/10.1016/S0927-7757(01)00961-X
  23. Kharitonova P. G., Serdobintsev A. A., Stetsyura S. V. Application of mass spectrometric studies to optimize a model of a biosensor structure with a heterophase signal transducer. Metody komp’iuternoi diagnostiki v biologii i meditsine – 2023: Sbornik statei Vserossiiskoi shkolyseminara. Pod red. An. V. Skripalia [Skripal An. V., ed. Methods of Computer Diagnostics in Biology and Medicine – 2023: Collection of articles of the All-Russian school-seminar]. Saratov, Izdatelstvo “Saratovskii istochnik”, 2023, pp. 126–129 (in Russian).
  24. Rokakh A. G., Stetsyura S. V., Serdobintsev A. A. Heterophase semiconductors under action of irradiations. Izvestiya of Saratov University. Physics, 2005, vol. 5, iss. 1, pp. 92–102. https://doi.org/10.18500/1817-3020-2005-5-1-92-102 (in Russian).
  25. Sheinkman M. K., Korsunskaya N. E. Photochemical reactions in semiconductors of A2B6 type. In: Fizika soedinenii A2B6 [Georgobiani A. N., Sheinkman M. K., eds. Phusics of Compounds A2B6]. Moscow, Nauka, 1986. pp. 109–145 (in Russian).
Received: 
19.06.2024
Accepted: 
02.09.2024
Published: 
31.03.2025