Izvestiya of Saratov University.

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

Cite this article as:

Fadyukova O. E., Lugovtsov A. E., Priezzhev A. V., Koshelev V. B. Optical Study of Blood Rheological Properties for Krushinsky – Molodkina Strain Rats with Diabetes Mellitus and Acute Disturbances of the Cerebral Circulation. //Izvestiya of Saratov University. New series. Series: Physics. , 2017, vol. 17, iss. 2, pp. 111-120. DOI:

Язык публикации: 
535.8, 612.111.6

Optical Study of Blood Rheological Properties for Krushinsky – Molodkina Strain Rats with Diabetes Mellitus and Acute Disturbances of the Cerebral Circulation

Fadyukova Olga Evgen'evna, Moscow State University. M.V. Lomonosov
Lugovtsov Andrey Egorovich, Moscow State University. M.V. Lomonosov
Priezzhev Alexander Vasil'evich, Moscow State University. M.V. Lomonosov
Koshelev Vladimir Borisovich, Moscow State University. M.V. Lomonosov

Background and Objectives: The aim of the study was to assess the hemorheological parameters for rats with experimental diabetes and acute disturbances of the cerebral circulation. Materials and Methods: For modeling of the acute cerebral circulation disturbances (ACCD) the epilepsy-prone rats of Krushinsky–Molodkina strain were used. During the application of the specifically elaborated standard procedure of sound stimulation a strong sound impact leads to ACCD predominantly of the hemorrhagic type. Hemorheologic study was performed six weeks after streptozotocin administration used for modeling diabetes mellitus (DM). Results: Characteristic time of linear aggregates formation T1 decreases by 21% and the rate of linear aggregates formation Kt increases by 47% (p <0.05) for DM rats in comparison with the control group. ACCD lead to decreasing of the characteristic size of the aggregates by 20% in comparison to the control group (p < 0.05). The erythrocyte deformability and whole blood viscosity were not changed, but the blood plasma viscosity was increased by 7% in diabetic rats compared to controls. Conclusion: Thus, DM impairs some of hemorheological parameters. However, ACCD associated with DM can lead to different changes in these parameters. Analysis of rheological parameters and the selection of adequate therapy can reduce the progression of complications and improve the quality of living with diabetes.

Библиографический список: 

1. Muravyov A. V., Cheporov S. V. Gemoreologiia (eksperimental’nye i klinicheskie aspekty reologii krovi) [Hemorheology (experimental and clinical aspects of blood rheology)]. Iaroslavl’: Izd-vo IaGPU, 2009. 178 p. (in Russian).

2. Firsov N. N., Dzhanashia P. H. Vvedenie v ekspe rimental’nuiu i klinicheskuiu gemoreologiiu [Introduction into experimental and clinical hemorheology]. Moscow, Izd-vo RGMU, 2008. 274 p. (in Russian).

3. Sokolova I. A. Agregatsiia eritrotsitov [Erythrocyte aggregation]. Regionarnoe krovoobrashchenie i mikrotsirkuliatsiia [Regionarnoe krovoobrashchenie i mikrotsirkuliatsiia], 2010, vol. 9, no. 4. pp. 4–26 (in Russian).

4. Muravyov A. V., Zamishlayev A. V., Tikhomirova I. A., Chuchkanov F. A., Bulaeva S. V., Maimistova A. A. Izmenenie reologicheskogo profi lia u bol’nykh diabetom 1 i 2 tipa pri lechenii Trentalom [Alteration in rheological profi le in patients with diabetes melitus type I and II under treatment with Trental]. Klinicheskaia farmakologiia i terapiia [Klinicheskaia farmakologiia i terapiia]. 2009, no. 2, pp. 87–90 (in Russian).

5. Dedov I. I., Shestakova M. V., Vikulova O. K. Gosudarstvennyi registr sakharnogo diabeta v Rossiiskoi Federatsii: status 2014 g. i perspektivy razvitiia [National register of diabetes mellitus in Russian Federation: status on 2014]. Sakharnyi diabet [Sakharnyi diabet], 2015, vol. 18, no. 3, pp. 5–23. DOI: (in Russian).

6. Sowers J. R., Epstein M. Risk factors for arterial disease in diabetes : hypertension // Diabetic Angiopathy / ed. J. E. Tooke. L. : Arnold Publ., 1999. P. 45–63.

7. Le Devehat C., Vimeux M., Khodabandehlou T. Blood rheology in patients with diabetes mellitus // Clin. Hemorheol. Microcirc. 2004. Vol. 30. P. 97–300.

8. Fisher M., Meiselman H. J. Hemorheological factors in cerebral ischemia // Stroke. 1991. Vol. 22. P. 1164–1169.

9. Cahn A., Livshits L., Srulevich A., Raz I., Yedgar S., Barshtein G. Diabetic foot disease is associated with reduced erythrocyte deformability // Intern. Wound J. 2016. Vol. 13, № 4. P. 500–504.

10. Krushinsky L. V. Formirovanie povedeniia zhivotnykh v norme i patologii [Formation of animal behaviour in norm and in pathology]. Мoscow, Мoscow University Press, 1960. 264 p. (in Russian).

11. Fadyukova O. E., Kuzenkov V. S., Krushinsky A. L., Koshelev V. B. Krysy Krushinskogo–Molodkinoi – model’ narushenii mozgovogo krovoobrashcheniia: ishemicheskoe prekonditsionirovanie i ustoichivost’ k zvukovomu stressu [Rats of Krushinsky–Molodkina strain – the model of cerebral circulation disturbances: ischemic preconditioning and the resistance to acoustic stress]. Formirovanie povedeniia zhivotnykh v norme i patologii: K 100-letiiu so dnia rozhdeniia L. V. Krushinskogo (1911–1984) [Formation of the animal behaviour in norm and pathology: on the 100th anniversary of the birth of L. V. Krushinsky (1911–1984)]. Moscow, Izdvo «Iazyki slavianskoi kul’tury», 2013, pp. 392–402 (in Russian).

12. Rukovodstvo po provedeniiu doklinicheskikh issledovanii lekarstvennykh sredstv [Guidelines for preclinical studies of drugs]: in 2 pt. Ed. A. N. Mironov. Мoscow, Grif i K, 2012, part 1. 944 p. (in Russian).

13. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes // Diabetologia. 2008. Vol. 51, № 2. P. 216–226.

14. Baskurt O. K., Boynard M., Cokelet G. C., Connes P., Cooke B. M., Forconi S., Liao F., Hardeman M. R., Jung F., Meiselman H. J., Nash G., Nemeth N., Neu B., Sandhagen B., Shin S., Thurston G., Wautier J. L. New guidelines for hemorheological laboratory techniques // Clin. Hemorheol. Microcirc. 2009. Vol. 42, № 2. P. 75–97.

15. Priezzhev A. V., Firsov N. N., Lademann J. Light Scattering Diagnostics of Red Blood Cell Aggregation in Whole Blood Samples. Chapter 11 // Handbook of Optical Biomedical Diagnostics / ed. V. V. Tuchin. First ed. Bellingham : SPIE Press, WA, 2002. P. 651–674.

16. Korotaeva T. V., Firsov N. N., Bjelle A., Vishlova M. A. Erythrocytes aggregation in healthy donors at native and standard hematocrit: the infl uence of sex, age, immunoglobulins and fi brinogen concentrations. Standardization of parameters // Clin. Hemorheol. Microcirc. 2007. Vol. 36, № 4. P. 335–343.

17. Nikitin S. Yu., Priezzhev A. V., Lugovtsov A. E. Diffraction by the Erythrocytes and Deformability Measurements // Advanced Optical Flow Cytometry : Methods and Disease Diagnoses / ed. V. V. Tuchin. First ed. Wiley-VCH Verlag GmbH & Co, KGaA, 2011. P. 133–154. DOI:

18. Firsov N. N., Priezzhev A. V., Klimova N. V., Tyurina A. Yu. Fundamental laws of the deformational behavior of erythrocytes in shear fl ow. Journal of Engineering Physics and Thermophysics, 2006, vol. 79, no. 1, pp. 118–124. 

19. Kalichman M. W., Dines K. C., Bobik M., Mizisin A. P. Nerve conduction velocity, laser Doppler fl ow, and axonal caliber in galactose and streptozotocin diabetes // Brain Res. 1998. Vol. 810, № 1–2. P. 130–137.

20. Allaman I., Bélanger M., Magistretti P. J. Methylglyoxal, the dark side of glycolysis // Front. Neurosci. 2015. Vol. 9. P. 1–12.

21. Distler M. G., Plant L. D., Sokoloff G., Hawk A. J., Aneas I., Wuenschell G. E., Termini J., Meredith S. C., Nobrega M. A., Palmer A. A. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal // J. Clin. Invest. 2012. Vol. 122, № 6. P. 2306–2315.

22. Zhao M., Ma H., Suh M., Schwartz T. H. Spatio-temporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex // J. Neurosci. 2009. Vol. 29, № 9. P. 2814–2823.

23. Huang J. Y., Li L. T., Wang H., Liu S. S., Lu Y. M., Liao M. H., Tao R. R., Hong L. J., Fukunaga K., Chen Z., Wilcox C. S., Lai E. Y., Han F. In vivo two-photon fl uorescence microscopy reveals disturbed cerebral capillary blood fl ow and increased susceptibility to ischemic insults in diabetic mice // CNS Neurosci. Ther. 2014. Vol. 20, № 9. P. 816–822.

24. González-Alonso J. ATP as a mediator of erythrocytedependent regulation of skeletal muscle blood fl ow and oxygen delivery in humans // J. Physiol. 2012. Vol. 590, № 20. P. 5001–5013.

25. Ulker P., Yaras N., Yalcin O., Celik-Ozenci C., Johnson P. C., Meiselman H. J., Baskurt O. K. Shear stress activation of nitric oxide synthase and increased nitric oxide levels in human red blood cells // Nitric Oxide. 2011. Vol. 24, № 4. P. 184–191.

26. Cloutier G., Zimmer A., Yu F. T., Chiasson J. L. Increased shear rate resistance and fastest kinetics of erythrocyte aggregation in diabetes measured with ultrasound // Diabetes Care. 2008. Vol. 31, № 7. P. 1400–1402.

27. Wu W. C., Ma W. Y., Wei J. N., Yu T. Y., Lin M. S., Shih S. R., Hua C. H., Liao Y. J., Chuang L. M., Li H. Y. Serum Glycated Albumin to Guide the Diagnosis of Diabetes Mellitus // PLoS One. 2016. Vol. 11, № 1: e0146780. DOI:

28. Vel'kov V. V. Glikozilirovannyi gemoglobin v diagnostike sakharnogo diabeta i v otsenke riska ego oslozhnenii [Glycosylated hemoglobin in diagnosis of diabetes mellitus and evaluation of the risks of its complications]. Kliniko-Laboratornyj Konsilium, 2008, no. 4, pp. 32–45 (in Russian).

29. Jain A., Gupta H. L., Narayan S. Hyperfi brinogenemia in patients of diabetes mellitus in relation to glycemic control and urinary albumin excretion rate // J. Assoc. Physicians India. 2001. Vol. 49. P. 227–230.

Краткое содержание:
(downloads: 19)
Полный текст в формате PDF(Ru):
(downloads: 17)