Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Gorokhov A. V., Semin V. V. Non-Markovian Quantum Relaxation and Theory of Spectral Lines Width. Izvestiya of Saratov University. Physics , 2010, vol. 10, iss. 1, pp. 40-45. DOI: 10.18500/1817-3020-2010-10-1-40-45

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 246)
Language: 
Russian
Heading: 
UDC: 
535.14; 536.75

Non-Markovian Quantum Relaxation and Theory of Spectral Lines Width

Autors: 
Gorokhov Alexandr Viktorovich, Samara State University
Semin Vitally Vladimirovich, S.P. Korolev Samara State Aerocosmic University
Abstract: 

The quantum equation of relaxation with non-Markovian terms in the approximation of short-time memory is derived. The correlation functions for a single two-level atom and system of two dipole-dipole interaction of atoms in the external regular fields and the contour of the radiation lines are calculated. Accounting Non-Markovian effects leads to a more vivid expression of dipole-dipole interaction.

Reference: 
  1. Вентцель А.Д., Фрейдпин М.И. Флуктуации в динамических системах под действием малых случайных возмущений. М.: Наука. 1979.424 с.
  2. Ван Кампен ИГ. Стохастические процессы в физике и химии. М.: Высп1. шк.. 1990. 376 р.
  3. Lindblad G. On the generators of quantum dynamical semigroups // Commun. Math. Phys. 1976. Vol.48, №2. P.119-130.
  4. Budini A.A. Stochastic representation of a class of nonMarcovian completely positive evolution // Phys. Rev. A. 2004. Vol.69. P.042I07(I)-042107(I2).
  5. Shabani A., Lidar D.A. Completely positive post-Markovian master equation via a measurement approach // Phys. Rev. A. 2001. Vol.71. P.020101 (R)I-020101 (R)4.
  6. Gainuldinov R. Kh. Nonlocal interaction and quantum dynamics // J. Phys. A: Math. Gen. 1999. Vol.32. P.5657-5678.
  7. Стлли M.O., Зубайри М.С. Квантовая оптика. М.; Физматлит, 2003. 512 с.
  8. Gangopadhyay G. Ray D. Non-Markovian master equation for linear and nonlinear systems // Phys. Rev. A. 1992. Vol.46, №3.P.1507-1515.
  9. Breuer ll.-P., Petruccione F. The Theory of Open Quantum Systems. Oxford: Oxford University Press, 2002. 630 p.
  10. Lax M. Noise. XI. Multitime correspondence between quantum and classical stochastic processes // Phys. Rev. 1968. Vol.172. P.350-361
  11. Budini A.A. Open quantum system approach to singlemolecule spectroscopy // Phys. Rev. A. 2009. Vol.79. P.043804(l-17).
  12. Kurizki G., Ben-Reuven A. Theory of cooperative fluorescence from products of reactions or collions: identical neutral atomic fragments // Phys. Rev. A. 1987. Vol.36. P.90-102.
  13. Gangopadhyay G. Non-Markovian master equation for linear and nonlinear systems // Phys. Rev. A. 1992. Vol.46. P.I507-I515.
  14. Breuer H.-P.. Petruccione F. The Theory of Open Quantum Systems. Oxford: Oxford University Press, 2002. 645 p.
  15. Горохов A.В., Семин В.В. Расчет спектра флуоресценции для двух взаимодействующих атомов // Оптика и спектроскопия. 2009. Т. 107, №4. С.617-622.