Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Konyukhov A. I. Modelling the dynamics of photonic crystal broad-area surface emitting laser. Izvestiya of Saratov University. Physics , 2005, vol. 5, iss. 1, pp. 102-107. DOI: 10.18500/1817-3020-2005-5-1-102-107

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
17.11.2005
Full text:
(downloads: 159)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
621.373.826

Modelling the dynamics of photonic crystal broad-area surface emitting laser

Autors: 
Konyukhov Andrey Ivanovich, Saratov State University
Abstract: 

The lasers beam dynamics in photonic crystal laser is investigated numerically. The decomposition of transverse field distribution in terms of orthogonal modes of photonic crystal structure is used. The relation between the transverse structure of output beam and structure of pump region is demonstrated. The modification of the transverse distribution of the pump allows to control of excitation of selected transverse mode families. 

Reference: 
  1. Sale Т.Е. Vertical Cavity Surface Emitting Lasers. N. Y., 1995.
  2. Martin-Regalado J., Balk S., San Miguel M. et al. Polarization and transverse-mode selection in quantum-well vertical-cavity surface-emitting lasers: index- and gain-guided devices // Quant. Semiclass. Opt. 1997. V. 9. P. 713-736 АН. Понюхов. Моделирование динамики полупроводникового лазера
  3. Srinivasana К., Painter О., Colombelli R. et al. basing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser // Appl. Phys. Lett. 2004. V. 84. P. 4164-4166. 
  4. Lee K.-H., Baek J.-H., Hwang I.-K. et al. Square-latice photonic-crystal vertical-cavity surface-emitting lasers // Opt. Express. 2004. V.12. P. 4136-4143.
  5. Baek J.-H., Song D.S., Hwang I.-K. et al. Transverse mode control by etch-depth tuning in 1120-nm GalnAs/GaAs photonic crystal vertical-cavity surface-emitting lasers // Opt. Express. 2004. V.12. P. 859-867.   
  6. Lee P.-T., Cao J.R., Choi S.-J, et al. Room-Temperature Operation of VCSEL-Pumped Photonic Crystal Lasers // IEEE Photonics Technology Lett. 2002. V.I4. P. 435-437. 
  7. Ivanov P.S., Unold H.J., Michalzik R. et al. Theoretical study of cold-cavity single-mode conditions in verticalcavity surface-emitting lasers with incorporated twodimensional photonic crystals // JOSA B. 2003. V. 20. P. 2442-2447. 
  8. Broeng J., Mogilevstev D., Barkou S.E. et al. Photonic Crystal Fibers: A New Class of Optical Waveguides // Optical Fiber Technology, 1999. V 5. P. 305-330.
  9. Chaos, Solitons Fractals / Ed. L. Lugiato. 1994. V. 4 (special issue).
  10. Johnson S.G., Joannopoulos J.D. Photonic crystals: The Road from Theory to Practice. Kluwer, 2001.
  11. Kerbage C.E., Eggleton B.J., Westbrook P.S., Windeler R.S. Experimental and scalar beam propagation analysis of an air-silica microstructure fiber // Opt. Express 2000.V. 7. P. 113-122. 
  12. Агравал Г. Нелинейная волоконная оптика. М., 1996.  
Received: 
14.06.2005
Accepted: 
14.10.2005
Published: 
17.11.2005