Cite this article as:

Usanov D. A., Skripal A. V., Dobdin S. Y., Astakhov E. I., Kostyuchenko I. S., Dzhafarov A. V. Methods of Autodyne Interferometry of the Distance by Injected Current Modulation of a Semiconductor Laser. Izvestiya of Saratov University. New series. Series Physics, 2018, vol. 18, iss. 3, pp. 189-201. DOI:


Methods of Autodyne Interferometry of the Distance by Injected Current Modulation of a Semiconductor Laser


Background and Objectives: Two methods of distance interferometry for two types of wave modulation of laser radiation have been presented. The methods of triangular and harmonic wave modulation of a signal have been described. The advantages of the triangular wave modulation method in combination with the use of the frequency of the self-mixing signal spectrum, as well as the advantages of the harmonic wave modulation method in combination with the use of the amplitudes of the self-mixing signal spectrum have been shown.

Equipment: The equipment includes a frequency-modulated semiconductor self-mixing laser diode RLD-650 on quantum-size structures with a diffraction-limited single spatial mode with the wavelength of 654 nm.

Results: A comparative analysis of these methods of measuring the distance to the object has shown the advantages of the harmonic wave modulation of the laser diode at the distance of less than 35 cm, as well as the advantages of the triangular wave modulation method at distances of more than 40 cm.

Conclusion: The results of computer simulation have shown that the accuracy of determining the distance at the harmonic wave modulation decreases with increasing the distance to the measured object. However, at small distances, its value is much smaller than at the triangular wave modulation of laser radiation.


1. Wang Y., Xie F., Ma S., Dong L. Review of surface profi le measurement techniques based on optical interferometry. Opt. Lasers Eng., 2017, vol. 93, iss. 1, pp. 164–170.

2. Sels S., Ribbens B., Bogaerts B., Peeters J. 3D model assisted fully automated scanning laser Doppler vibrometer measurements. Opt. Lasers Eng., 2017, vol. 99, iss. 1, pp. 22–30.

3. Bosch T., Lescure M. Optical distance measurement methods can technically be put into three categories: interferometry, time-of-fl ight and triangulation methods. Selected Papers on Laser Distance Measurement. SPIE Milestone Series. Bellingham: SPIE Optical Engineering Press, 1995, vol. 115, pp. 738.

4. Kilpelä A., Pennala R., Kostamovaara J. Precise pulsed time-of-fl ight laser range fi nder for industrial distance measurements. Rev. Sci. Instrum., 2001, vol. 72, pp. 2197–2202.

5. Joohyung L., Young-Jin K., Keunwoo L., Sanghyun L., Seung-Woo K. Time-of-fl ight measurement with femtosecond light pulses. Nat. Photonics, 2010, vol. 4, pp. 716–720.

6. Hintikka M., Kostamovaara J. Experimental investigation into laser ranging with sub-ns laser pulses. IEEE Sensors Journal, 2018, vol. 18, no. 3, pp. 1047–1053.

7. Ji Z., Leu M. C. Design of optical triangulation devices. Opt. Laser Technol, 1989, vol. 21, iss. 5, pp. 339–341.

8. Timothy A. C., Kenneth T. V. G., Lindsey N. E. Laserbased triangulation techniques in optical inspection of industrial structures. Proceedings. Optical Testing and Metrology III: Recent Advances in Industrial Optical Inspection, 1991, vol. 1332, pp. 474–486. DOI:

9. Reza S. A., Khwaja T. S., Mazhar M. A., Niazi H. K., Nawab R. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control. Appl. Opt., 2017, vol. 56, iss. 21, pp. 5996–6006.

10. Daendliker R., Hug K., Politch J., Zimmermann E. High-accuracy distance measurements with multiplewavelength interferometry. Optical Engineering, 1995, vol. 34, iss. 8, pp. 2407–2412. DOI:

11. Berkovic G., Shafi r E. Optical methods for distance and displacement measurements. Adv. Opt. Photonics, 2012, vol. 4, iss. 4, pp. 441–471. DOI:

12. Amann M. C., Bosch T., Lescure M., Myllyla R., Rioux M. Laser ranging: a critical review of usual technique for distance measurement. Optical Engineering, 2001, vol. 40, iss. 1, pp. 10–19.

13. Deborah M., Kane K., Shore A. Unlocking dynamical diversity: Optical feedback effects on semiconductor lasers. Chichester: John Wiley & Sons Ltd., 2005. 339 p.

14. Usanov D. A., Skripal A. V. Measurement of micro-and nanovibrations and displacements using semiconductor laser autodynes. Quantum Electronics, 2011, vol. 41, iss. 1, pp. 86–94.

15. Zhua W., Chenb Q., Wangb Y., Luob H., Wub H., Maa B. Improvement on vibration measurement performance of laser self-mixing interference by using a pre-feedback mirror. Opt. Lasers Eng., 2018, vol. 105, pp. 150–158.

16. Li D., Huang Z., Mo W., Ling Y., Zhang Z., Huang Z. Equivalent wavelength self-mixing interference vibration measurements based on envelope extraction Fourier transform algorithm. Appl. Opt., 2017, vol. 56, iss. 31, pp. 8584–8591. DOI:

17. Norgia M., Donati S. A Displacement-measuring instrument utilizing self-mixing interferometry. IEEE Trans. Instrum. Meas., 2003, vol. 52, iss. 6, pp. 1765–1770.

18. Xu J., Huang L., Yin S., Bingkun G., Chen P. All-fi ber self-mixing interferometer for displacement measurement based on the quadrature demodulation technique. Opt. Rev, 2018, vol. 25, iss. 1, pp 40–45.

19. Guo D., Shi L., Yu Y., Xia W., Wang M. Micro-displacement reconstruction using a laser self-mixing grating interferometer with multiple-diffraction. Optics Express, 2017, vol. 25, iss. 25, pp. 31394–31406. DOI:

20. Koelink M. H., Slot M., M. de Mul F. F. M., Greve J., Graaff R., Dassel A. C. M., Aarnoudse J. G. Laser Doppler velocimeter based on the self-mixing effect in a fi bercoupled semiconductor laser: theory. Appl. Opt., 1992, vol. 31, pp. 3401–3408. DOI:

21. Scalise L., Yu Y. G., Giuliani G., Plantier G., Bosch T. Self-mixing laser diode velocimetry: Application to vibration and velocity measurement. IEEE Trans. Instrum. Meas., 2004, vol. 53, iss. 1, pp. 223–232.

22. Hao Lin, Junbao Chen, Wei Xia, Hui Hao, Dongmei Guo, Ming Wang. Enhanced self-mixing Doppler velocimetry by fi ber Bragg grating. Optical Engineering, 2018, vol. 57, iss. 5, 051504. DOI:

23. Guo D., Jiang H., Shi L. Wang M. Laser Self-Mixing Grating Interferometer for MEMS Accelerometer Testing. IEEE J. Photonics, 2018, vol. 10, iss. 1, 6800609.

24. Usanov D. A., Skripal A. V., Dobdin S. Yu. Determining acceleration from micro- and nanodisplacements measured using autodyne signal of semiconductor laser on quantum-confi ned structures. Tech. Phys. Lett., 2010, vol. 36, iss. 11, pp. 1009–1011 (in Russian).

25. Usanov D. A., Skripal A. V., Dobdin S. Yu. The acceleration determination at unevenly accelerated at micro- and nanodisplacements by the autodine signal of semiconductor laser. Journal of nano and microsystem technique, 2010, no. 10, pp. 51–54 (in Russian).

26. Fleming M. W., Mooradian A. Spectral characteristics of external cavity controlled semiconductor lasers. IEEE J. Quantum Electron, 1981, vol. QE-17, pp. 44–59.

27. Olesen H., Osmundsen J. H., Tromborg B. Nonlinear dynamics and spectral behavior for an external cavity laser. IEEE J. Quantum Electron, 1986, vol. 22, iss. 6, pp. 762–773.

28. Schunk N., Petermann K. Numerical analysis of the feedback regimes for a single-mode semiconductor lasers with external feedback. IEEE J. Quantum Electron, 1988, vol. 24, iss. 7, pp. 1242–1247.

29. Sukharev A. G., Napartovich A. P. Harmonic modulation of radiation of an external-feedback semiconductor laser. Quantum Electronics, 2007, vol. 37, no. 2, pp. 149–153 (in Russian)

30. Giuliani G, Norgia M., Donati S., Bosch T. Laser diode self-mixing technique for sensing applications. J. Opt. A: Pure Appl. Opt., 2002, vol. 4, iss. 6, pp. 283–294.

31. Donati S. Developing self-mixing interferometry for instrumentation and measurements. Laser Photonics Rev., 2012, vol. 6, iss. 3, pp. 393–417. DOI:

32. Sobolev V. S., Kashcheeva G. A. Self-mixing frequencymodulated laser interferometry. Optoelectr. Instrum. Data Process., 2008, vol. 44, no. 6, pp. 49–65.

33. Gouaux F., Servagent N., Bosch T. Absolute distance measurement with an optical feedback interferometer. Appl. Opt., 1998, vol. 37, iss. 28, pp. 6684–6689. DOI:

34. Norgia M., Giuliani G., Donati S. Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop. IEEE Trans. Instrum. Meas., 2007, vol. 56, iss. 5, pp. 1894–1900.

35. Mourat G., Servagent N., Bosch T. Distance measurement using the self-mixing effect in a three-electrode distributed Bragg refl ector laser diode. Optical Engineering, 2000, vol. 39, iss. 3, pp. 738–743.

36. Guo D., Wang M. Self-mixing interferometry based on a double modulation technique for absolute distance measurement. Appl. Opt., 2007, vol. 46, iss. 9, pp. 1486–1491.

37. Dehui Wang, Junfeng Zhou, Chenchen Wang, Jingang Wang, Hao Deng, Liang Lu. Measurement of the Absolute Distance inside an All Fiber DBR Laser by Self- Mixing Technique. International Conference on Optical and Photonics Engineering, 2016, vol. 10250, 1025022. DOI:

38. Bi T., Wang C., Zhou J., Wang D., Chen Y., Yu B., Lu L. Research on the infl uence of laser-tuning characteristics on all-fi ber distributed Bragg refl ector self-mixing range fi nder. Optical Engineering, 2018, vol. 57, iss. 5, 051505. DOI:

39. Zheng J. Analysis of optical frequency-modulated continuous-wave interference. Appl. Opt., 2004, vol. 43, iss. 21, pp. 4189–4198.

40. Usanov D. A., Skripal A. V., Avdeev K. S. Determining distances to objects using a frequency-switched semiconductor laser autodyne. Tech. Phys. Lett., 2007, vol. 33, iss. 11, pp. 930–932.

41. Astahov E. I., Usanov D. A., Skripal A. V., Dobdin S. Yu. Self-mixing Interferometry of Distance at Wavelength Modulation of Semiconductor Laser. Izv. Saratov Univ. (N. S.), Ser. Physics, 2015, vol. 15, iss. 3, pp. 12–18. DOI:

42. Usanov D. A., Skripal A. V., Astakhov E. I. Measurements of the nanovibration amplitude by a frequency-modulated laser autodyne. Tech. Phys., 2013, vol. 58, iss. 12, pp. 1856–1858.

43. Usanov D. A., Skripal A. V., Astakhov E. I. Determination of nanovibration amplitudes using frequency-modulated semiconductor laser autodyne. Quantum Electronics, 2014, vol. 44, no. 2, pp. 184–188 (in Russian)

44. Usanov D. A., Skripal A. V., Astakhov E. I., Dobdin S.Yu. Nanodisplacement registration of the near-fi eld microwave microscope using a semiconductor laser autodyne. Journal of nano- and microsystem technique, 2018, no. 1, pp. 3–10 (in Russian).

45. Usanov D. A., Skripal A. V., Astahov E. I., Dobdin S. Yu. Autodyne interferometry for range-fi nding under laser radiation wavelength modulation. Tech. Phys. Lett., 2016, vol. 42, pp. 919–922. DOI:

46. Usanov D. А., Skripal А. V., Avdeev К. S. Spectrum of semicondactor laser autodyne at focusing radiation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, no. 2, pp. 54–65.

Short text (in English): 
Full text (in Russian):