Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Selifonov A. A., Zyuryukina O. A., Lazareva E. N., Skibina J. S., Zagorovskaya . M., Syrova O. V., Aleshkina O. Y., Tuchin V. V. Measurement of Optical Properties of Human Gums and Dentin in the Spectral Range from 350 to 800 nm. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 4, pp. 258-267. DOI: 10.18500/1817-3020-2020-20-4-258-267

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2020
Full text:
(downloads: 276)
Full text(En):
(downloads: 167)
Language: 
English
UDC: 
535.341.08:535.346.1

Measurement of Optical Properties of Human Gums and Dentin in the Spectral Range from 350 to 800 nm

Autors: 
Selifonov Alexey Andreevich, Education and Research Institute of Nanostructures and Biosystems, Saratov State University
Zyuryukina Olga Anatolievna, Saratov State University
Lazareva Ekaterina Nikolaevna, Saratov State University
Skibina Julia Sergeevna, Saratov State University
Zagorovskaya Tatyana Mikhailovna, Saratov State Medical University named after V. I. Razumovsky
Syrova Olga Vladimirovna, Saratov State Medical University named after V. I. Razumovsky
Aleshkina Olga Yurievna, Saratov State Medical University named after V. I. Razumovsky
Tuchin Valery Viсtorovich, Saratov State University
Abstract: 

Knowledge of the optical properties of biological tissues is important for the development of optical diagnostics, photodynamic and photothermal therapy of various diseases. However, despite the significant number of works devoted to the determination of the optical properties of tissues, the optical properties of human gums and dentin remain currently poorly understood. In this work, we experimentally studied the optical properties of human gums and dentin in the spectral range from 350 nm to 800 nm. Basing on measured diffuse reflection and total transmission spectra and using the Inverse Adding Doubling (IAD) method, the spectral dependences of absorption and scattering coefficients of the studied tissue samples were calculated.

Reference: 
  1. Tuchin V. V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics. 3rd ed. Bellingham, SPIE Press, 2015. 980 р.
  2. Carneiro I., Carvalho S., Henrique R., Luís О., Tuchin V. V. A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophotonics, 2019, vol. 12, no. 4, pp. e201800333.
  3. Shi L., Alfano R. R. Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods. Taylor & Francis Group, Pan Stanford Publishing Pte. Ltd., Singapore, 2017. 350 р.
  4. Bolton F. J ., Bernat A. S., Bar-Am K., Levitz D., Jacques S. Portable, low-cost multispectral imaging system: design, development, validation, and utilization. J. Biomed. Opt., 2018, vol. 23, no. 12, pp. 121612.
  5. Prahl S. A., Gemert M. J. C., Welch A. J. Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt., 1993, vol. 32, no. 4, pp. 559–568.
  6. Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V., Chikina E. E., Knyazev A. B., Mareev O. V. Optical properties of mucous membrane in the spectral range 350–2000 nm. Optics and Spectroscopy, 2004, vol. 97, no. 6, pp. 978–983.
  7. Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V. Optical properties of human sclera in spectral range 370–2500 nm. Optics and Spectroscopy, 2010, vol. 109, no. 2, pp. 197–204.
  8. Belikov A. V., Zagorul’ko A. M., Smirnov S. N., Sergeev A. N., Mikhailova A. A., Shimko A. A. Optical Properties of Human Eye Cataractous Lens in vitro in the Visible and Near-IR Ranges of the Spectrum. Optics and Spectroscopy, 2019, vol. 126, no. 5, pp. 574–579.
  9. Bashkatov A. N., Genina E. A., Kozintseva M. D., Kochubey V. I., Gorofkov S. Y., Tuchin V. V. Optical properties of peritoneal biological tissues in the spectral range of 350–2500 nm. Optics and Spectroscopy, 2016, vol. 120, no. 1, pp. 1–8.
  10. Bashkatov A. N., Genina E. A., Kochubey V. I., Gavrilova A. A., Kapralov S. V., Grishaev V. A., Tuchin V. V. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology. Med. Laser Appl., 2007, vol. 22, no. 2, pp. 95–104.
  11. Bashkatov A. N., Genina E. A., Kochubey V., Rubtsov V. S., Kolesnikova E. A., Tuchin V. V. Optical properties of human colon tissues in the 350–2500 spectral range. Quantum Electron, 2014, vol. 44, no. 8, pp. 779–784.
  12. Carvalho S., Gueiral N., Nogueira E., Henrique R., Oliveira L., Tuchin V. V. Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm. Proceedings of SPIE, 2017, vol. 10063, pp. 100631L-1–100631L-16.
  13. Jacques S. L. Optical properties of biological tissues: a review. Phys. Med. Biol., 2013, vol. 58, no. 11, pp. 37–61.
  14. Cheong W. F., Prahl S. A., Welch A. J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron, 1990, vol. 26, pp. 2166–2185.
  15. Nogueira C., Graciano A. X., Nagata J. Y., Fujimaki M., Terada R. S. S., Bento A. C., Astrath N. G. C., Baesso M. L. Photosensitizer and light diffusion through dentin in photodynamic therapy. J. Biomed. Opt., 2013, vol. 18, no. 5, pp. 055004. DOI: https://doi.org/10.1117/1.JBO.18.5.055004
  16. Patil A., Unnikrishnan V. K., Ongole R., Pai K. M., Kartha V. B., Chidangil S. Non-invasive in vivo screening of oral malignancy using laser-induced fluorescence based system. Sovremennye tehnologii v medicine, 2018, vol. 10, no. 1, pp. 15–26 (in Russian). DOI: https://doi.org/10.17691/stm2018.10.1.02
  17. Shkarednaya O. V., Goryacheva T. P., Chunikhin A. A., Bazikyan E. A., Gazhva S. I. Optimizing the Early Diagnosis of Oral Mucosal Pathologies. CTM, 2017, vol. 9, no. 3, pp. 119–124 (in Russian).
  18. Bulgakova N. N., Volkov E. A., Pozdnyakova T. I. Аutofl uorescent somatoscope as a method of oncoscience diseases of the oral mucosa. Rossiyskiy stomatologicheskiy zhurnal, 2015, vol. 19, no. 1, pp. 27–30 (in Russian).
  19. Perez M. M., Ghinea R., Herrera L. J., Carrillo F., Ionescu A. M., Paravina R. D. Color difference thresholds for computer-simulated human Gingiva. J. Esthet. Restor. Dent., 2018, vol. 30, no. 2, pp. E24–E30.
  20. Sailer I. Threshold values for the perception of color changes in human teeth. Int. J. Periodontics Restorative Dent., 2016, vol. 36, pp. 777–783.
  21. Sarmast N. D., Angelov N., Ghinea R., Powers J. M., Paravina R. D. Color compatibility of gingival shade guides and gingiva-colored dental materials with healthy human gingiva. Int. J. Periodontics Restorative Dent., 2018, vol. 38, pp. 397–403.
  22. Ho D. K., Ghinea R., Herrera L. J., Angelov N., Paravina R. D. Color Range and Color Distribution of Healthy Human Gingiva: a Prospective Clinical Study. Scientifi c Reports, 2015, vol. 5, pp. 18498. DOI: https://doi.org/10.1038/srep18498
  23. Polo C. G., Montero J., Casado A. M. M. Proposal for a gingival shade guide based on in vivo spectrophotometric measurements. J. Adv. Prosthodont, 2019, vol. 11, pp. 239–246. DOI: https://doi.org/10.4047/jap.2019.11.5.239
  24. Ghinea R., Herrera L. J., Perez M. M., Ionescu A. M., Paravina R. D. Gingival shade guides: Colorimetric and spectral modeling. J. Esthet. Restor. Dent., 2018, vol. 30, pp. E31–E38.
  25. Gomez-Polo C., Gomez-Polo M., Martinez Vazquez de Parga J. A., Celemin-Vinuela A. Clinical study of the 3D-master color system among the Spanish population. J. Prosthodont, 2018, vol. 27, pp. 708–715.
  26. Gomez-Polo C., Montero J., Gomez-Polo M., de Parga J. A., Celemin-Vinuela A. Natural Tooth color estimation based on age and gender. J. Prosthodont, 2017, vol. 26, pp. 107–114.
  27. Baumann B. Polarization sensitive optical coherence tomography: a review of technology and applications. Appl. Sci., 2017, vol. 7, pp. 474. DOI: https://doi.org/10.3390/app7050474
  28. Hamdoon Z., Jerjes W., Hopper C. Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins. Photodiagn. Photodyn. Ther., 2016, vol. 13, pp. 211–217. DOI: https://doi.org/10.1016/j.pdpdt.2015.07.170
  29. Le N. M., Song Sh., Zhou H., Xu J., Li Y., Sung Ch., Sadr A., Chung K.-H., Subhash H. M., Kilpatrick L., Wang R. K. A noninvasive imaging and measurement using optical coherence tomography angiography for the assessment of gingiva: An in vivo study. J. Biophotonics, 2018, vol. 11, pp. e201800242. DOI: https://doi.org/10.1002/jbio.201800242
  30. Tsai M.-T., Chen Y., Lee Ch.-Yu., Huang B.-H., Trung N. H., Lee Ya.-Ju., Wang Y.-Li. Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography. J. Biomed. Opt. Express, 2017, vol. 11, no. 8, pp. 5001–5012. DOI: https://doi.org/10.1364/BOE.8.005001
  31. Clark A. L., Gillenwater A., Alizadeh-Naderi R., Elnaggar A. K., Kortum R. Detection and diagnosis of oral neoplasia with an optical coherence microscope. J. Biomed. Opt., 2004, vol. 9, no. 6, pp. 1271–1280. DOI: https://doi.org/10.1117/1.1805558
  32. Li K., Yang Z., Liang W., Shang J., Liang Y., Wan S. Lowcost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging. J. Biomed. Opt., 2020, vol. 25, no. 4, pp. 046003. DOI: https://doi.org/10.1117/1.JBO.25.4.046003
  33. Wang J., Zheng W., Lin K., Huang Zh. Development of a hybrid Raman spectroscopy and optical coherence tomography technique for real-time in vivo tissue measurements. Opt. Lett., 2016, vol. 41, no. 13, pp. 3045–3048. DOI: https://doi.org/10.1364/OL.41.003045
  34. Park K. J., Schneider H., Haak R. Assessment of defects at tooth/self-adhering flowable composite interface using swept-source optical coherence tomography (SS-OCT). Dent. Mater., 2015, vol. 31, no. 5, pp. 534–541.
  35. Horie K., Shimada Y., Matin Kh., Ikeda M., Sadr A., Sumi Y., Tagami J. Monitoring of cariogenic demineralization at the enamel-composite interface using swept-source optical coherence tomography. Dent. Mater., 2016, vol. 32, no. 9, pp. 1103–1112. DOI: https://doi.org/10.1016/j.dental.2016.06.017
  36. Kang H., Darling C. L., Fried D. Use of an optical clearing agent to enhance the visibility of subsurface structures and lesions from tooth occlusal surfaces. J. Biomed. Opt., 2016, vol. 21, no. 8, pp. 081206 . DOI: https://doi.org/10.1117/1.JBO.21.8.081206
  37. Skandarajah A., Sunny S. P., Gurpur P., Reber C. D., D’Ambrosio M. V., Raghavan N., James B. L., Ramanjinappa R. D., Suresh A., Kandasarma U., Birur P., Kumar V. V., Galmeanu H. C., Itu A. M., Modiga-Arsu M., Rausch S., Sramek M., Kollegal M., Paladini G., Kuriakose M., Ladic L., Koch F., Fletcher D. Mobile microscopy as a screening tool for oral cancer in India: A pilot study. PLoS One, 2017, vol. 12, no. 11, pp. e0188440.
  38. Jiang F., Luo L., Alauddin S. S., Glande J., Chen J. Light transmittance of the periodontium. Lasers in Dental Science, 2017, vol. 1, pp. 107–115. DOI: https://doi.org/10.1007/s41547-017-0015-y
  39. Grisimov V. N. Assessment of the enamel mineralization dynamics by the manifestation of Fraunhofer diffraction. Journal «The Dental Institute», 2019, vol. 85, no. 4, pp. 111–113.
  40. Villarroel M., Fahl N., De Sousa A. M., De Oliveira O. B. Jr. Direct esthetic restorations based on translucency and opacity of composite resins. J. Esthet. Restor. Dent., 2011, vol. 23, no. 2, pp. 73–87.
  41. Belikov A. V., Romanos G., Skrypnik A. V., Altshuler G. B., Feldchtein F. I., Smirnov M. Z. Uncovering Dental Implants Using a New Thermo-Optically Powered (TOP) Technology with Tissue Air-Cooling. Lasers in Surgery and Medicine, 2015, vol. 47, pp. 411–420.
  42. Tuchin V. V., Altshuler G. A. Dental and oral tissue optics, Chapter 9. In: Anil Kishen, Anand Asundi, eds. Fundamentals and Applications of Biophotonics in Dentistry, Series on Biomaterials and Bioengineering. Imperial College Press, UK, 2007, vol. 4. 300 p.
  43. Ko F., Tien G., Chuang M., Huang T., Hung M., Sung K. In-vivo diffuse refl ectance spectroscopy (DRS) of oral mucosa of normal volunteers. J. Biomed. Opt., 2016, vol. 46, no. 10, pp. JTu3A.45. DOI: https://doi.org/10.1364/CANCER.2016.JTu3A.45
  44. Ionescu А. M., Cardona J. C., Garzón I., Oliveira A. C., Ghinea R., Alaminos M., Pérez M. M. Integrating-sphere measurements for determining optical properties of tissue-engineered oral mucosa. J. Eur. Opt. Soc.-Rapid Publ., 2015, vol. 10, pp. 15012. DOI: https://doi.org/10.2971/jeos.2015.15012
  45. Gekelman D., White J. M. Optical properties and color of porcine gingival. Proceedings of SPIE – The International Society for Optical Engineering, 2002, pp. 4610. DOI: https://doi.org/10.1117/12.469330
  46. Schutt J. B., Arens J. F., Shai C. M., Stromberg E. Highly Reflecting Stable White Paint for the Detection of Ultraviolet and Visible Radiations. Appl. Opt., 1974, vol. 13, pp. 2218–2221.
  47. Zijp J. R., Bosch J. J. T. Theoretical model for the scattering of light by dentin and comparison with measurements. Appl. Opt., 1993, vol. 32, no. 4, pp. 411−415.
  48. Kienle A., Lilge L., Patterson M. S., Hibst R., Steiner R., Wilson B. C. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt., 1996, vol. 32, no. 13, pp. 2304–2314.
  49. Mie Scattering Calculator. Available at: https://omlc.org/calc/mie_calc.html (accessed 26 August 2019).
  50. Serkan P., Kürşat Er., Nilüfer T. P. Penetration depth of laser Doppler fl owmetry beam in teeth. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2005, vol. 100, no. 1, pp. 125–129. DOI: https://doi.org/10.1016/j.tripleo.2004.11.018
  51. Belikov A. V., Altshuler G. B., Shatilova K. V., Tuchin V. V., Skrypnik A. V., Feldchtein F. I., Pushkareva A. E., Cernavin I. Peroxide dental bleaching via laser microchannels and tooth color measurements. J. Biomed. Opt., 2016, vol. 21, no. 12, pp. 125001-1–12500-9.