Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Stepanov E. A., Mayorov A. O., Romanov K. V., Romanov D. V., Romanov V. A. Mathematical modeling of the physical mechanism of wave flux generation at the photospheric level for different stages of the solar activity cycle. Izvestiya of Saratov University. Physics , 2022, vol. 22, iss. 2, pp. 100-110. DOI: 10.18500/1817-3020-2022-22-2-100-110, EDN: VAUIGI

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.06.2022
Full text:
(downloads: 243)
Language: 
Russian
Article type: 
Article
UDC: 
533.981
EDN: 
VAUIGI

Mathematical modeling of the physical mechanism of wave flux generation at the photospheric level for different stages of the solar activity cycle

Autors: 
Stepanov Evgeniy Alexandrovich, Saratov State University
Mayorov Alexander Olegovich, Saratov State University
Romanov Konstantin Valeryevich, Krasnoyarsk State Pedagogical University named after V. P. Astafyev
Romanov Dmitriy Valeryevich, Krasnoyarsk State Pedagogical University named after V. P. Astafyev
Romanov Valeriy Alexandrovich, Saratov State University
Abstract: 

Background and Objectives: The nonlinear phase of the development of Parker’s instability of large-scale oscillations of magnetic fields at various depths of the convective zone of the Sun up to the stage of saturation is investigated. Materials and Methods: Based on the conservative difference scheme, an algorithm for calculating the dynamics of a thin magnetic tube when moving in the convective zone and the solar atmosphere is presented. The equilibrium conditions of the position of the magnetic tube at various depths of the convective zone are determined. The types of linear oscillations of the tube near the equilibrium position are defined: fast (Alfven) and slow (varicose) waves. Results: The calculation has revealed the realization of quasilinear oscillations of emerging magnetic fields near the photospheric level, generating a steady stream of weak shock waves in the lower layers of the solar atmosphere. It has been shown that the development of Parker’s instability in the low-frequency part of the spectrum of global oscillations of magnetic fields provides a stable, spherically symmetric structure of anomalous heating in the era of the minimum solar activity cycle. With an increase in the frequency of global oscillations of magnetic fields at the stage of growth of the cycle activity, the structure of anomalous heating becomes spatially inhomogeneous – radiation. Conclusion: The number of rays of anomalous heating with the development of the activity cycle monotonously increases and, in the era of maximum activity, passes into a spatially uniform structure of anomalous heating of the atmosphere in accordance with the observed data.

Acknowledgments: 
The authors thank Academician of the Russian Academy of Sciences Sergey V. Alekseenko for discussing the materials of the work.
Reference: 
  1. Zirin G. Solnechnaya atmosfera [Solar Atmosphere]. Moscow, Mir Publ., 1969. 504 p. (in Russian).
  2. Priest E. R. Magnetohydrodynamics of the Sun. Cambridge University Press, 2014. 582 p.
  3. Kontogiannis I., Gontikakis C., Tsiropoula G., Tziotziou K. Probing the Quiet Solar Atmosphere from the Photosphere to the Corona. Sol. Phys., 2018, vol. 293, pp. 56. https://doi.org/10.1007/s11207-018-1275-8
  4. Hamada A., Asikainen T., Mursula K. New Homogeneous Dataset of Solar EUV Synoptic Maps from SOHO/EIT and SDO/AIA. Sol. Phys., 2020, vol. 295, pp. 2. https://doi.org/10.1007/s11207-019-1563-y
  5. Reeves E. M., Noyes R. W., Withbroe G. L. Observing Programs in Solar Physics during the 1973 ATM Skylab Program. Sol. Phys., 1972, vol. 27, pp. 251–270. https://doi.org/10.1007/BF00153096
  6. McCauley P. I., Cairns I. H., White S. M., Mondal S., Lenc E., Morgan J., Oberoi D. The Low – Frequency Solar Corona in Circular Polarization. Sol. Phys., 2019, vol. 294, pp. 106. https://doi.org/10.1007/s11207-019-1502-y
  7. Vásquez A. M., Frazin R. A., Vourlidas A., Ward B., Bart van der Holst, Russell A., Philippe L. Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe. Sol. Phys., 2019, vol. 294, pp. 81. https://doi.org/10.1007/s11207-019-1471-1
  8. Spruit H. C. Motion of magnetic flux tubes in the solar convection zone and chromosphere. Astron. Astrophys., 1981, vol. 98, pp. 155–160.
  9. Romanov D. V. Matematicheskoye modelirovaniye vliyaniya mnogomernosti na evolyutsiyu magnitnykh poley i strukturu anomal’nogo progreva solnechnoy atmosfery [Mathematical Modeling of the Influence of Multidimensionality on the Evolution of Magnetic Fields and the Structure of Anomalous Heating of the Solar Atmosphere]. Thesis Diss. Cand. Sci. (Phys.). Krasnoyarsk, 2003. 128 p. (in Russian).
  10. Stepanov E. A., Mayorov A. O., Romanov K. V., Romanov D. V., Romanov V. A. Mathematical modeling of the Parker’s instability development of large-scale vibrations of magnetic fields in the sun convective zone. Izvestiya of Saratov University. Physics, 2021, vol. 21, iss. 2, pp. 106–115 (in Russian). https://doi.org/10.18500/1817-3020-2021-21-2-106-115
  11. Romanov K. V. Matematicheskoye modelirovaniye fizicheskikh protsessov anomal’nogo progreva solnechnoy atmosfery [Mathematical Modeling of the Physical Processes of Anomalous Heating of the Solar Atmosphere]. Thesis Diss. Cand. Sci. (Phys.). Novosibirsk, 2003. 145 p. (in Russian).
  12. Mayorov A. O., Romanov V. A., Romanov K. V., Romanov D. V. Numerical Modeling of the Physical Mechanism of Anomalous Heating of the Solar Atmosphere. Izvestiya of Saratov University. Physics, 2020, vol. 20, iss. 1, pp. 4–15 (in Russian). https://doi.org/10.18500/1817-3020-2020-20-1-4-15
  13. Parker E. M. Kosmicheskiye magnitnyye polya. Ikh obrazovaniye i proyavleniya [Cosmic Magnetic Fields. Their Formation and Manifestations]. Moscow, Mir Publ., 1982. Vol. 1, 608 p. ; Vol. 2, 408 p. (in Russian).
  14. Parker E. N. Stellar fibril magnetic system. I. Reduced energy state. Astrophys. J., 1984, vol. 283, pp. 343–348.
  15. Mariska J. T., Kjeldseth-Moe O. Book-Review – the Solar Transition Region. Sol. Phys., 1994, vol. 149, pp. 421. https://doi.org/10.1023/A:1005138131541
  16. Christensen-Dalsgaard J., Dappen W., Ajukov S. V., Anderson E. R., Antia H. M., Basu S., Baturin V. A., Berthomieu G., Chaboyer B., Chitre S. M., Cox A. N., Demarque P., Donatowicz J., Dziembowski W. A., Gabriel M., Gough D. O., Guenther D. B., Guzik J. A., Harvey J. W., Hill F., Houdek G., Iglesias C. A., Kosovichev A. G., Leibacher J. W., Morel P., Proffitt C. R., Provost J., Reiter J., Rhodes E. J. Jr., Rogers F. J., Roxburgh I. W., Thompson M. J., Ulrich R. K. The current state of Solar modeling. Science, 1996, vol. 272, pp. 1286.
  17. Landau L. D., Lifshitz E. M. Gidrodinamika [Hydro-dynamic]. Moscow, Nauka Publ., 1986. 736 p. (in Russian).
  18. Piddington J. H. Solar magnetic fields and convection. VI. Basic properties of magnetic flux tubes. Astrophysics and Space Science, 1976, vol. 45, pp. 47–62.
  19. Deubner Franz-Ludwig. On the Powerspectrum of the Photospheric Resonance Oscillations. Sol. Phys., 1972, vol. 23, pp. 304–306. https://doi.org/10.1007/BF00148095
Received: 
13.02.2022
Accepted: 
24.03.2022
Published: 
30.06.2022