Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Dzhumaliev A. S., Nikulin Y. V. Magnetic Properties of Textured NiFe(111) and NiFe(200) Films. Izvestiya of Saratov University. Physics , 2017, vol. 17, iss. 4, pp. 242-253. DOI: 10.18500/1817-3020-2017-17-4-242-253

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 216)
538.975; 539.26; 539.231

Magnetic Properties of Textured NiFe(111) and NiFe(200) Films

Dzhumaliev Aleksandr Sergeevich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Nikulin Yuri Vasil'evich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

Thickness dependencies (d м 20–370 nm) of the saturation magnetization 4πМ, the ferromagnetic resonance linewidth ΔH, the coercivity field Hc and the shape of hysteresis loops were investigated for Ni80Fe20 (NiFe) films with (200) texture. The thickness dependencies of magnetic parameters for NiFe(200) films were compared with the dependencies 4πМ(d), ΔH(d) and Hc(d) for NiFe(111) films with strong (111) texture and polycrystalline NiFe films. Materials and Methods: NiFe(200) films were dc-sputtered at the substrate temperature Ts ≈ 570 K without substrate bias voltage (Ub ≈ 0). NiFe(111) films were dc-sputtered at the substrate temperature Ts ≈ 300 K and two values of the substrate bias voltage: Ub ≈ −100 V (strong (111) texture) and Ub ≈ 0 (polycrystalline films with weak (111) texture). The microcrystalline structure of the films was studied by X-ray diffraction, scanning electron and probe microscopy. The magnetic parameters 4πМ and ΔH were measured by the FMR technique (9.9 GHz). The hysteresis loops and the coercivity field Hc were measured using the vibrating sample magnetometer technique. All measurements were carried out at room temperature with the magnetic field applied in the film plane. The magnetic domain structure was investigated using the magnetic force microscopy. Conclusion: It is shown that the thickness dependencies of 4πМ(d) and ΔH(d) for Ni(200) films and Ni(111) films with strong and weak (111) texture coincide with the accuracy 10%, while the Hc (d) dependencies are different. For polycrystalline NiFe films with weak (111) texture (Ub ≈ 0) at the critical thickness dcr≈120 nm the hysteresis loops change from rectangular to “overcritical” and the Hc values increase from Hc ≤ 2 Oe at d < dcr to Hc > 40 Oe for the thicknesses d > dcr. For NiFe(111) films with strong (111) texture (Ub ≈ −100 V) and NiFe(200) the hysteresis loops remain rectangular in the thickness range d ≈ 20–370 nm, Hc values coincide with the accuracy 5% and tend to decrease from Hc ≈ 2.5–3 Oe to Hc ≈ 1.5–2 Oe with increasing thickness. The behavior of the 4πМ(d), ΔH(d) and Hc (d) dependencies is related to the microcrystalline structure (texture, grain size) of the NiFe films.


1. Prinz G. A. Magnetoelectronics applications. Journal of Magnetism and Magnetic Materials, 1999, vol. 200, pp. 57–68. 

2. NeUbser S. D., Grundler D. Magnonics: Spin Waves on the Nanoscale. Advanced Materials, 2009, vol. 21, pp. 2927–2932. 

3. Mruczkiewic M., Krawczyk M., Sakharov V., Khivintsev Y., Filimonov Y., Nikitov S.. Standing spin waves in magnonic crystal. J. Appl. Phys., 2013, vol. 113, P. 093908. 

4. Zong B. Y., Han G. C., Zheng Y. K., Guo Z. B., Li K. B., Wang L., Qiu J. J., Liu Z. Y., An L. H., Luo P., Li H. L., Liu B. Ultrasoft and high magnetic moment NiFe fi lm electrodeposited from a Cu2+ contained solution. IEEE Transactions on Magnetics, 2006, vol. MAG-42, pp. 2775–2777. 

5. McGuire T. R., Porter R. I. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Transactions on Magnetics, 1975, vol. MAG-11, pp. 1018–1038. 

6. Vonsovskii S. V. Magnetizm [Magnetics]. Moscow, Nauka, 1971. 1032 p. (in RUbsian). 

7. Uppili H., Daglen B. Bi–Directional Giant Magneto Impedance Sensor. Advances in Materials Physics and Chemistry, 2013, vol. 3, pp. 249–254. 

8. He J.-F., Wang S.-Y. Effect of substrate temperature and buffer layer on the anisotropic magnetoresistance of Ni0.81Fe0.19 ultra-thin fi lms. Journal of Optoelectronics and Advanced Materials, 2012, vol. 6, no. 1–2, pp. 165–168.

9. Svalov A. V., Gonzalez Asensio B., Chlenova A. A., Savin P. A., Larra-naga A., Gonzalez J. M., Kurlyandskaya G. V. Study of the effect of the deposition rate and seed layers on structure and magnetic properties of magnetron sputtered FeNi films. Vacuum, 2015, vol. 119, pp. 245–249. 

10. Gong H., Litvinov D., Klemmer T. J., Lambeth D. N., Howard J. K. Seed layer effects on the magnetoresistive properties of NiFe fi lms. IEEE Transactions on Magnetics, 2000, vol. 36, no. 5, pp. 2963–2965.

11. Cargill G. S., Herd S. R., Krall W. E., Ahn K. Y. Structuresensitive magnetic properties of RF sputtered NiFe fi lms. IEEE Transactions on Magnetics, 1979, vol. MAG-15, no. 6, pp. 1821–1823. 

12. Hoshi Y., Kojimi M., Naoe M., Yamanaka S. Preparation of permalloy fi lms Ubing facing-type targets and a high-rate and low-temperature sputtering method. Electronics and Communicationd in Japan, 1982, vol. 65, no. 10, pp. 91–98. 

13. Hoshi Y., Kojimi M., Naoe M., Yamanaka S. High-rate deposition of permalloy fi lms by two facing targets type of sputtering. IEEE Transactions on Magnetics, 1982, vol. MAG-18, no. 6, pp. 1433–1435. 

14. Zhang H.-W., Yang S. Q. Properties of thin magnetic materials produced from DC magnetron sputtering; the effects of substrate bias and the partial pressure of reactive gases. Vacuum, 1985, vol. 46, no 7, pp. 661–666. 

15. Gorres J. M., Hanson M. M., Lo D. S. Stress in Co–Ni–Fe and Ni–Fe Films. J. Appl. Phys., 1968, vol. 39, pp. 743–744. DOI: https://doi.org/10.1063/1.2163610

16. Chapman V. B., Marwaha A. S., Collins A. J. The Effect of Substrate Temperature on the Magnetic and Structural Properties of Ni–Fe Thin Films Deposited in Ultrahigh and Ordinary Vacuum. Thin Solid Films, 1981, vol. 76, pp. 77–82. 

17. Shimizu H., Hoshi Y. Mechanical Properties of Permalloy Thin Films Deposited by Sputtering (in Japanese). IEEE Transactions on Magnetics, 2004, vol. 124. no. 3, pp. 265–270. 

18. Freund L. B., Suresh S. Thin Film materials: Stress, Defect Formation and Surface Evolution. Cambridge, Cambridge University Press, 2003. 751 p. 

19. Wang S. G., Tian E. K., Lung C. W. Surface energy of arbitrary crystal plane of bcc and fcc metals. Journal of Physics and Chemistry of Solids, 2000, vol. 61, pp.1295–1298. 

20. Rijks Th. G. S. M., Lenczowski S. K. J., Coehoorn R., de Jonge W. J. M. In-plane and out-of-plane anisotropic magnetoresistance in Ni80Fe20 thin fi lms. Phys. Rev. B., 1997, vol. 56, pp. 362–366. 

21. Minakata R. Magnetic properties of Ni-Fe fi lms prepared by a DC triode sputtering method. IEEE Transactions on Magnetics, 1988, vol. 24, pp. 2020–2023. 

22. Svalov A. V., Kurlyandskaya G. V., González Asensio B., Collantes J. M., Larrañaga A. Tuning the structure and magnetic softness of thin permalloy fi lms by variations in the thickness of titanium seed layer. Materials Letters, 2015, vol. 152, pp. 159–162. 

23. Jhingan A. K. Effect of nitrogen on the crystal texture and microstructure of sputtered NiFe fi lms. J. Appl. Phys., 1985, vol. 57, pp. 3991–3994. 

24. Imagawa T., Yamazaki H., Mitsuoka K., Kobayashi T., Narishige S., Sugita Y. Surface Morphology of the Grain of Permalloy Films. Transactions on Magnetics in Japan, 1990, vol. 5, pp. 509–514. 

25. Prieto P., Camarero J., Marco J. F., Jimenez E., Benayas J. M., Sanz J. M. Characterization of Nanocrystalline Permalloy Thin Films Obtained by Nitrogen IBAD. IEEE Transactions on Magnetics, 2008, vol. 44, pp. 3913–3916. 

26. Park E., Kim Y.-C., Jang S.-U., Kim J.-H., Han S.-W., Kwon S.-J. Induced Magnetic Anisotropy in Permalloy Films Annealed with Magnetic Field. Met. Mater. Int., 2013, vol. 19, no. 1, pp. 129–133. 

27. Dzhumaliev A. S., Nikulin Yu. V., Filimonov Yu. A. Deposition of NiFe(200) and NiFe(111) Textured Films onto Si/SiO2 Substrates by DC Magnetron Sputtering. Physics of the Solid State, 2016, vol. 58, no. 5, pp. 1053–1057. 

28. Somekh R. E. The thermalization of energetic atoms during the sputtering process. Journal of Vacuum Science and Technology A, 1984, vol. 2, pp. 1285–1287. 

29. Vysotskii S. L., Dzhumaliev A. S., Nikitov S. A., Filimonov Iu. A., Tsyplin A. Iu. Issledovanie ul’tratonkikh plenok Fe/GaAs (100) metodom FMR [Investigation of the ultrathin Fe/GaAs (100) fi lms by FMR method]. Journal of Communications Technology and Electronics, 2000, vol. 45, no. 2, pp. 209–213 (in RUbsian). 

30. Sugita Y., Fujiwara H., Sato T. Critical thickness and perpendicular anisotropy of evaporated permalloy fi lms with stripe domains. Appl. Phys. Lett., 1967, vol. 10, pp. 229–231. 

31. Svalov A. V., Aseguinolaza I. R., Garcia-Arribas A., Orue I., Barandiaran J. M., Alonso J., FernándezGubieda M. L., Kurlyandskaya G. V. Structure and magnetic properties of thin permalloy fi lms near the “transcritical” state. IEEE Trans. Magn, 2010, vol. 46, no. 2, pp. 333–336. 

32. Langford J. I., Wilson A. J. C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst., 1978, vol. 11, pp. 102–113. 

33. Landeros P., Arias R. E., Mills D. L. Two magnon scattering in ultrathin ferromagnets: The case where the magnetization is out of plane. Phys. Rev. B, 2008, vol. 77, 214405. 

34. Bonin R., Schneider M. L., Silva T. J., Nibarger J. P. Dependence of magnetization dynamics on magnetostriction in NiFe alloys. J. Appl. Phys., 2005, vol. 98, 123904.

35. Fackler S. W., Donahue M. J., Gao T., Nero P. N. A. Local control of magnetic anisotropy in transcritical permalloy fi lms isung ferroelectric BaTiO3 domains. Appl. Phys. Lett., 2014, vol. 105, 212905. 

36. Windischmann H. Intrinsic stress in sputter-deposited thin fi lms. Critical Reviews in Solid State and Material Science, 1992, vol. 17, pp. 547–596. 

Краткое содержание:
(downloads: 129)