Cite this article as:

Babkov L. M., Davydova N. A., Ivlieva I. V. IR Spectra of Salol and theirs Interpretation by Molecular Modeling. Izvestiya of Saratov University. New series. Series Physics, 2015, vol. 15, iss. 4, pp. 44-54. DOI:

УДК 539.194; 539.196.3

IR Spectra of Salol and theirs Interpretation by Molecular Modeling


IR spectra of salol have been measured at stable and metastable phases at temperature range from 11 to 298 K. IR spectra are different. We suggest that conformational mobility of salol and influence of H-bonding are responsible for the differences. The hypothesis was conformed by the results of computer simulation of geometrical structure and IR spectra of salol during optimization in DFT method. The energy was minimized, the geometric parameters were optimized, and the force constants and dipole moments ware calculated, as well as the IR spectra of conformers and hydrogen-bonded complexes. The possibility of conformational mobility and inter- and intramolecular H-bonding of the sample was confirmed by the results of computer simulation and experimental data. The observed IR spectra were interpreted.


1. Ramos J. M., Correia N. T., Dioglo H. P. Vitrifi cation, nucleation and crystallization in phenyl-2-hydroxybenzoate (salol) studied by Differential Scanning Calorimetry (DSC) and Thermally Stimulated Depolarisation Currents (TSDC) // Phys. Chem. Chem. Phys. 2004. Vol. 6, № 4. P. 793‒798.

2. Hinze G., Brace D. D., Gottke S. D., Fayer M. D. Orientational Dynamics in Supercooled Liquids near Tc and Comparison with Ideal Mode-Coupling Theory // Phys. Rev. Lett. 2000. Vol. 84, № 11. P. 2437‒2441.

3. Baran J., Davydova N. A. First-order phase transitions from poles in asymptotic representations of partition functions // Phys. Rev. E. 2010. Vol. 81, № 3. Р. 031503 (1-6).

4. Hanuza J., Sasiadek W., Michalski J., Lorenc J., Marczka M., Kaminslii A. A., Butashin A. V., Klapper H., Hulliger J., Mohmed Abudelrhman F. A. Polarized Raman and infrared spectra of the salol crystal‒chemical quantum calculations of the vibrational normal modes // Vibrational Spectroscopy. 2004. Vol. 34. P. 253‒266.

5. Кон В. Электронная структура вещества – волновые функции и функционалы плотности // УФН. 2002. Т. 172, № 3. С. 336‒348.

6. Попл Дж. Квантово-химические модели // УФН. 2002. Т. 172, № 3. С. 349‒356.

7. Adamo C., Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters : The mPW and mPW1PW models // J. Chem. Phys. 1998. Vol. 108. P. 664‒675.

8. Frisch J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Gaussian Inc., Pittsburgh PA, 2003.

Short text (in English): 
Full text (in Russian):