Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Babkov L. M., Davydova N. A., Moisejkina E. A. IR Spectra of Cyclohexanol, Structural-Dynamic Models of Molecule. Izvestiya of Saratov University. Physics , 2012, vol. 12, iss. 1, pp. 54-62. DOI: 10.18500/1817-3020-2012-12-1-54-62

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 300)
Language: 
Russian
Heading: 
UDC: 
539.194; 539.196.3

IR Spectra of Cyclohexanol, Structural-Dynamic Models of Molecule

Autors: 
Babkov Lev Mikhailovich, Saratov State University
Davydova Nadezhda Aleksandrovna, Institute of Physics, National Academy of Sciences of Ukraine
Moisejkina Elena Aleksandrovna, Saratov State University
Abstract: 

In wide temperature range IR spectra of cyclohexanol in different phase state (plastic phase, crystal phases II, III) have been measured in range 600–3600 см–1. Using density functional method B3LYP/6-31G structural – dynamic models of conformers of cyclohexanol molecule, which differs from each other by orientation of hydroxyl group relatively carbonic ring and cyclohexan, have been constructed. The energy, structure, dipole moments, polarizabilities and the frequencies of the normal modes in harmonic approximation and IR intensities have been calculated. Characteristic OH-group vibrations frequencies allowed to identify defined conformers realized in a sample have been determined. Interpretation of the measured spectra has been performed on the basis of the correspondence between theoretical and measured spectra. Conclusion about probable conformational structure has been performed.

Reference: 
  1. Kelley K. K. Cyclohexanol and the third law of thermodynamics // J. Amer. Chem. Soc. 1929. Vol. 51. P. 1400–1406.
  2. Neelakantan R. Raman spectra of cyclohexanol // Proc. Mathematical Sciences. 1963. Vol. 57. P. 94–102.
  3. Green J. R., Griffi th W. T. Phase transformations in solid cyclohexanol // J. Phys. Chem. Solids. 1965. Vol. 26. P. 631–637.
  4. Adachi K., Suga H., Seki S. Phase changes in crystalline and glassy-crystalline cyclohexanol // Bull. Chem. Soc. Jpn. 1968. Vol. 41. P. 1073–1087.
  5. Wunderlich B. The detection of conformational disorder by thermal analysis // Pure & Appl. Chem. 1989. Vol. 61, № 8. P. 1347–1351.
  6. Inscore F., Gift A., Maksymiuk P., Farquharson S. Characterization of chemical warfare G-agent hydrolysis products by surface – enhanced Raman spectroscopy // SPIE. 2004. Vol. 5585. P. 46–52.
  7. Bonnet A., Chisholm J., Sam Motherwell W.D., Jones W. Hydrogen bonding preference of equatorial versus axial hydroxyl groups in pyran and cyclohexane rings in organic crystals // Cryst. Eng. Comm. 2005. Vol. 7, № 9. P. 71–75.
  8. Ibberson R. M., Parsons S., Allan D. R., Bell T. Polymorphism in cyclohexanol // Acta Cryst. 2008. Vol. 64. Р. 573–582.
  9. Элькин П. М., Шальнова Т. А., Гордеев И. И. Структурно-динамические модели конформеров циклогексанола // Прикаспийский журнал : управление и высокие технологии. 2010. Т. 11, № 3. С. 41–45.
  10. Кон В. Электронная структура вещества – волновые функции и функционалы плотности // Успехи физ. наук. 2002. Т. 172, № 3. С. 336–348.
  11. Попл Дж. А. Квантово-химические модели // Успехи физ. наук. 2002. Т. 172, № 3. С. 349–356.
  12. Frisch J., Trucks G. W., Schlegel H. B. et al. Gaussian 03, Revision B.03 / Gaussian Inc. Pittsburgh, 2003. 302 p.