Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Koronevskiy N. V., Inozemtseva O. A., Sergeeva B. V., Ushakov A. V., Sergeev S. A. Investigation of the recrystallization process of vaterite microparticles containing magnetite nanoparticles grown on polycaprolactone fibers by ultrasonic treatment. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 3, pp. 297-305. DOI: 10.18500/1817-3020-2024-24-3-297-305, EDN: ZXTQMF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.08.2024
Full text:
(downloads: 93)
Language: 
Russian
Article type: 
Article
UDC: 
29.19.16:29.19.22:616-77:615.4
EDN: 
ZXTQMF

Investigation of the recrystallization process of vaterite microparticles containing magnetite nanoparticles grown on polycaprolactone fibers by ultrasonic treatment

Autors: 
Koronevskiy Nikita Vladimirovich, Saratov State University
Inozemtseva Olga Aleksandrovna, Saratov State University
Sergeeva Bela V., Saratov State University
Ushakov Arseniy V., Saratov State University
Sergeev Sergey Alekseevich, Saratov State University
Abstract: 

Background and Objectives. A method for mineralizing polycaprolactone nanofibers by calcium carbonate (vaterite) microparticles containing nanoparticles of mixed iron oxide (magnetite) using the ultrasonic treatment is proposed. Materials and Methods: The process of recrystallization vaterite microparticles, which are part of the composite material, into calcite using X-ray diffraction and scanning electron microscopy was studied. Results: The resulting composite material can be used in tissue engineering as either a scaffold for cell growth or a drug carrier for their local release. Conclusion: It has been found that the complete process of recrystallization of vaterite into calcite takes about 27 hours, while the recrystallization rate increases significantly after 12 hours of exposure to water. According to X-ray diffraction data, there are no magnetic nanoparticles in the resulting coating by 24 o’clock. This is due to their gradual release as a result of the recrystallization of vaterite into calcite.

Acknowledgments: 
The work was supported in the framework of the implementation of the innovation project No. 17309ГУ/2022 dated 04.12.2022. The authors express their gratitude to the Laboratory of Diagnostics of Nanomaterials and Structures, as well as to the Center for Collective Use of Saratov State University and personally to Viktor V. Galushka and Maria A. Popova for their assistance in conducting the study.
Reference: 
  1. Boccaccini A. R., Blaker J. J. Bioactive composite materials for tissue engineering scaffolds. Expert Review of Medical Devices, 2005, vol. 2, no. 3, pp. 303–317. Https://doi.org/10.1586/17434440.2.3.303
  2. Huo Y., Liu Y., Xia M., Du H., Lin Z., Li B., Liu H. Nanocellulose-based composite materials used in drug delivery systems. Polymer, 2022, vol. 14, no. 13, pp. 2648. https://doi.org/10.3390/polym14132648
  3. Tran C. D., Mututuvari T. M. Cellulose, chitosan, and keratin composite materials. Controlled drug release. Langmuir, 2015, vol. 31, no. 4, pp. 1516–1526. https://doi.org/10.1021/la5034367
  4. Darder M., Aranda P., Ruiz-Hitzky E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, 2007, vol. 19, no. 10, pp. 1309–1319. https://doi.org/10.1002/adma.200602328
  5. Hsissou R., Seghiri R., Benzekri Z., Hilali M., Rafik M., Elharfi A. Polymer composite materials: A comprehensive review. Composite Structures, 2021, vol. 262, pp. 113640. https://doi.org/10.1016/j.compstruct.2021.113640
  6. Yang X., Wang J., Guo H., Liu L., Xu W., Duan G. Structural design toward functional materials by electrospinning: A review. e-Polymers, 2020, vol. 20, no. 1, pp. 682–712. https://doi.org/10.1515/epoly-2020-0068
  7. Antaby E., Klinkhammer K., Sabantina L. Electrospinning of chitosan for antibacterial applications–Current trends. Applied Sciences, 2021, vol. 11, no. 24, pp. 11937. https://doi.org/10.3390/app112411937
  8. Blackstone B. N., Gallentine S. C., Powell H. M. Collagenbased electrospun materials for tissue engineering: A systematic review. Bioengineering, 2021, vol. 8, no. 3, pp. 39. https://doi.org/10.3390/bioengineering8030039
  9. Ghomi E. R., Lakshminarayanan R., Chellappan V., Verma N. K., Chinnappan A., Neisiany R. E. Electrospun aligned PCL/gelatin scaffolds mimicking the skin ECM for effective antimicrobial wound dressings. Advanced Fiber Materials, 2023, vol. 5, no. 1, pp. 235–251. https://doi.org/10.1007/s42765-022-00216-w
  10. Suamte L., Tirkey A., Babu P. J. Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications. Smart Materials in Medicine, 2023, vol. 4, pp. 243–256. https://doi.org/10.1016/j.smaim.2022.09.005
  11. Janmohammadi M., Nazemi Z., Salehi A. O. M., Seyfoori A., John J. V., Nourbakhsh M. S., Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Materials, 2023, vol. 20, pp. 137–163. https://doi.org/10.1016/j.bioactmat.2022.05.018
  12. Montaseri Z., Abolmaali S. S., Tamaddon A. M., Farvadi F. Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. Journal of Drug Delivery Science and Technology, 2023, vol. 79, pp. 104018. https://doi.org/10.1016/j.jddst.2022.104018
  13. Li G., Liu H., Li T. D., Wang J. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications. Materials Science and Engineering: C, 2012, vol. 32, no. 4, pp. 627–636. https://doi.org/10.1016/j.msec.2011.12.013
  14. Sánchez L. D., Brack N., Postma A., Pigram P. J., Meagher L. Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials, 2016, vol. 106, pp. 24–45. https://doi.org/10.1016/j.biomaterials.2016.08.011
  15. Saveleva M. S., Ivanov A. N., Kurtukova M. O., Atkin V. S., Ivanova A. G., Lyubun G. P., Martyukova A. V., Cherevko E. I., Sargsyan A. K., Fedonnikov A. S., Norkin I. A., Skirtach A. G., Gorin D. A., Parakhonskiy B. V. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. Materials Science and Engineering, 2018, vol. 85, pp. 57–67. https://doi.org/10.1016/j.msec.2017.12.019
  16. Fadia P., Tyagi S., Bhagat S., Nair A., Panchal P., Dave H., Dang S., Singh S. Calcium carbonate nano-and microparticles: Synthesis methods and biological applications. 3 Biotech, 2021, vol. 11, pp. 457. https://doi.org/10.1007/s13205-021-02995-2
  17. Sergeeva A., Sergeev R., Lengert E., Zakharevich A., Parakhonskiy B., Gorin D., Sergeev S., Volodkin D. Composite Magnetite and Protein Containing CaCO3 Crystals. External Manipulation and Vaterite→Calcite Recrystallization-Mediated Release Performance. ACS Applied Materials & Interfaces, 2015, vol. 7, iss. 38, рр. 21315–21325. https://doi.org/10.1021/acsami.5b05848
  18. Savelyeva M. S., Abalymov A. A., Lyubun G. P., Vidyasheva I. V., Yashchenok A. M., Douglas T. E. L., Gorin D. A., Parakhonskiy B. V. Vaterite coatings on electrospun polymeric fibers for biomedical applications. Journal of Biomedical Materials Research Part A, 2017, vol. 105, iss. 1, pp. 94–103. https://doi.org/10.1002/jbm.a.35870
  19. Salehipour M., Rezaei S., Mosafer J., Pakdin-Parizi Z., Motaharian A., Mogharabi-Manzari M. Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents. Journal of Nanoparticle Research, 2021, vol. 23, pp. 48. https://doi.org/10.1007/s11051-021-05156-x
  20. Wіodarczyk A., Gorgoс S., Radoс A., Bajdak-Rusinek K. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and perspectives. Nanomaterials, 2022, vol. 12, no. 11, pp. 1807. https://doi.org/10.3390/nano12111807
  21. Dasari A., Xue J., Deb S. Magnetic nanoparticles in bone tissue engineering. Nanomaterials, 2022, vol. 12, no. 5, pp. 757. https://doi.org/10.3390/nano12050757
  22. Ahmed M. K., Menazea A. A., Mansour S. F., Al-Wafi R. Differentiation between cellulose acetate and polyvinyl alcohol nanofibrous scaffolds containing magnetite nanoparticles/graphene oxide via pulsed laser ablation technique for tissue engineering applications. Journal of Materials Research and Technology, 2020, vol. 9, no. 5, pp. 11629–11640. https://doi.org/10.1016/j.jmrt.2020.08.041
  23. Koronevskiy N. V., Inozemtseva O. A., Sergeeva B. V., Ushakov A. V., Sergeev S. A. Investigation of the process of recrystallization calcium carbonate microparticles grown on polycaprolactone nanofibers using scanning electron microscopy and X-ray diffraction. Izvestiya of Saratov University. Physics, 2023, vol. 23, iss. 2, pp. 179–187 (in Russian). https://doi.org/10.18500/1817-3020-2023-23-2-179-187
  24. Koronevskiy N. V., Savelyeva M. S., Lomova M. V., Sergeeva B. V., Kozlova A. A., Sergeev S. A. Composite mesoporous vaterite-magnetite coatings on polycaprolactone fibrous matrix. Izvestiya of Saratov University. Physics, 2022, vol. 22, iss. 1, pp. 62–71. https://doi.org/10.18500/1817-3020-2022-22-1-62-71
  25. Koronevskiy N. V., Inozemtseva O. A., Sergeeva B. V., Ushakov A. V., Andreev A. A., Sergeev S. A. Optimization of the mineralization process of polycaprolactone fibers with vaterite microparticles. Advanced Materials, 2024, vol. 6, pp. 38–46. https://doi.org/10.30791/1028-978X-2024-6-38-46
  26. Trakoolwannachai V., Kheolamai P., Ummartyotin S. Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Composites Part B: Engineering, 2019, vol. 173, pp. 106974. https://doi.org/10.1016/j.compositesb.2019.106974
  27. Yaseen S. A., Yiseen G. A., Li Z. Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide. ACS Omega, 2019, vol. 4, iss. 6, pp. 10160–10170. https://doi.org/10.1021/acsomega.9b00042
  28. Chong K. Y., Chia C. H., Zakaria S., Sajab M. S. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. Journal of Environmental Chemical Engineering, 2014, vol. 2, iss. 4, pp. 2156–2161. https://doi.org/10.1016/j.jece.2014.09.017
  29. Taufiq A., Nikmah A., Hidayat A., Sunaryono S., Mufti N., Hidayat N., Susanto H. Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle. Heliyon, 2020, vol. 6, no. 4, pp. e03784. https://doi.org/10.1016/j.heliyon.2020.e03784
Received: 
02.06.2024
Accepted: 
30.08.2024
Published: 
30.08.2024