Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Barkov P. V., Slepchenkov M. M., Glukhova O. E. Influence of functional groups on the electronic and energy characteristics of thin films of holey graphene: Results of DFTB simulation. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 2, pp. 114-125. DOI: 10.18500/1817-3020-2024-24-2-114-125, EDN: LKRPBA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.06.2024
Full text:
(downloads: 126)
Language: 
Russian
Article type: 
Article
UDC: 
538.915
EDN: 
LKRPBA

Influence of functional groups on the electronic and energy characteristics of thin films of holey graphene: Results of DFTB simulation

Autors: 
Barkov Pavel V., Saratov State University
Slepchenkov Mikhail Mikhailovich, Saratov State University
Glukhova Olga E., Saratov State University
Abstract: 

Background and Objectives: Graphene and its derivatives are promising materials for the fabrication of biosensors with high sensitivity and low detection limits due to their large specific surface area, excellent flexibility and strength, and high electrical conductivity. This work examines holey graphene, which has been successfully synthesized and has already found its application in nano- and bioelectronics. It is known from experimental data that the free edges of holes in the structure of holey graphene contain functional groups, the influence of which should be taken into account when developing sensor devices based on it. The purpose of this work was to establish the patterns of the influence of functionalization with carbonyl and carboxyl groups on the electronic energy parameters of holey graphene. Materials and Methods: The object of study was a film of holey graphene with almost circular holes with a diameter of 1.2 nm. All calculations were performed using the self-consistent-charge density functional based tight binding method in the DFTB+ software package at a temperature of 300 K. The process of functionalization of holey graphene was modeled using an original algorithm for step-by-step placement of functional groups on atoms at the edges of the hole. Results: Based on the calculation results, we have revealed the patterns of redistribution of the electron charge density between functional groups and holey graphene and the features of changes in the Fermi level of a graphene object during functionalization. Conclusion: The revealed patterns are important in the development of sensitive elements of sensor devices made on the basis of holey graphene.

Acknowledgments: 
The research was supported by the Russian Science Foundation grant (project No. 23-72-01122, https://rscf.ru/project/23-72-01122/).
Reference: 
  1. Dey A. Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 2018, vol. 229, pp. 206–217. https://doi.org/10.1016/j.mseb.2017.12.036
  2. Wong Y. C., Ang B. C., Haseeb A. S. M. A., Baharuddin A. A., Wong Y. H. Review – Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. J. Electrochem. Soc., 2020, vol. 167, no. 3, article no. 037503. https://doi.org/10.1149/2.0032003JES
  3. Liu X., Zheng W., Kumar R., Kumar M., Zhang J. Con[1]ducting polymer-based nanostructures for gas sensors. Coordination Chemistry Reviews, 2022, vol. 462, article no. 214517. https://doi.org/10.1016/j.ccr.2022.214517
  4. Choi J. H., Lee J., Byeon M., Hong T. E., Park H., Lee C. Y. Graphene-Based Gas Sensors with High Sensitivity and Minimal Sensor-to-Sensor Variation. ACS Appl. Nano Mater., 2020, vol. 3, no. 3, pp. 2257–2265. https://doi.org/10.1021/acsanm.9b02378
  5. Ikram M., Bari M. A., Bilal M., Jamal F., Nabgan W., Haider J., Haider A., Nazir G., Khan A. D., Khan K., Tareen A. K., Khan Q., Ali G., Imran M., Caffrey E., Maqbool M. Innovations in the synthesis of graphene nanostructures for bio and gas sensors. Biomaterials Advances, 2023, vol. 145, article no. 213234. https://doi.org/10.1016/j.bioadv.2022.213234
  6. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of graphene. Rev. Mod. Phys., 2009, vol. 81, pp. 109–162. https://doi.org/10.1103/RevModPhys.81.109
  7. Xu W., Peeters F. M., Lu T. C. Dependence of resistivity on electron density and temperature in graphene. Phys. Rev. B, 2009, vol. 79, article no. 73403. https://doi.org/10.1103/PhysRevB.79.073403
  8. Li X., Wang X., Zhang L., Lee S., Dai H. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 2008, vol. 319, iss. 5867, pp. 1229–1232. https://doi.org/10.1126/science.1150878
  9. Jiang L., Fan Z. Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures. Nanoscale, 2014, vol. 6, pp. 1922–1945. https://doi.org/10.1039/C3NR04555B
  10. Bai J., Zhong X., Jiang S., Huang Y., Duan X. Graphene nanomesh. Nat. Nanotechnol., 2010, vol. 5, pp. 190–194. https://doi.org/10.1038/nnano.2010.8
  11. Zribi B., Castro-Arias J.-M., Decanini D., Gogneau N., Dragoe D., Cattoni A., Ouerghi A., Korri-Youssoufi H., Haghiri-Gosnet A.-M. Large area graphene nanomesh: An artificial platform for edge-electrochemical biosensing at the sub-attomolar level. Nanoscale, 2016, vol. 8, pp. 15479–15485. https://doi.org/10.1039/C6NR04289A
  12. Yuan W., Li M., Wen Z., Sun Y., Ruan D., Zhang Z., Chen G., Gao Y. The Fabrication of Large-Area, Uniform Graphene Nanomeshes for High-Speed, Room-Temperature Direct Terahertz Detection. Nanoscale Research Letters, 2018, vol. 13, pp. 190. https://doi.org/10.1186/s11671-018-2602-6
  13. Schmidt M. E., Iwasaki T., Muruganathan M., Haque M., Ngoc H. V., Ogawa S., Mizuta H. Structurally Controlled Large-Area 10 nm Pitch Graphene Nanomesh by Focused Helium Ion Beam Milling. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 10362–10368. https://doi.org/10.1021/acsami.8b00427
  14. Yang Y., Yang X., Liang L., Gao Y., Cheng H., Li X., Zou M., Ma R., Yuan Q., Duan X. Large-area grapheme-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, vol. 364, pp. 1057–1062. https://doi.org/10.1126/science.aau5321
  15. Li F., Li Y., Zhao Y., Liu M., Kan E., Li Q., Wan Y. Synthesis of graphene nanomesh with symmetrical fractal patterns via hydrogen-free chemical vapor deposition. Nanotechnology, 2022, vol. 34, no. 4, article no. 045601. https://doi.org/10.1088/1361-6528/ac9d42
  16. Rajput N. S., Zadjali S. A., Gutierrez M., Esawi A. M. K., Teneiji M. A. Synthesis of holey graphene for advanced nanotechnological applications. RSC Adv., 2021, vol. 11, pp. 27381–27405. https://doi.org/10.1039/D1RA05157A
  17. Schneider M., Brouwer P. W. Density of states as a probe of electrostatic confinement in graphene. Phys. Rev. B, 2014, vol. 89, article no. 195437. https://doi.org/10.1103/PhysRevB.89.205437
  18. Carpenter C., Christmann A. M., Hu L., Fampiou I., Muniz A. R., Ramasubramaniam A., Maroudas D. Elastic properties of graphene nanomeshes. Appl. Phys. Lett., 2014, vol. 104, article no. 141911. https://doi.org/10.1063/1.4871304
  19. Martinazzo R., Casolo S., Tantardini G. F. Symmetry-induced band-gap opening in graphene superlattices. Phys. Rev. B, 2010, vol. 81, article no. 245420. https://doi.org/10.1103/PhysRevB.81.245420
  20. Nguyen V. H., Nguyen M. C., Nguyen H.-V., Dollfus P. Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures. Journal of Applied Physics, 2013, vol. 113, article no. 013702. https://doi.org/10.1063/1.4772609
  21. Zhang J., Zhang W., Ragab T., Basaran C. Mechanical and electronic properties of graphene nanomesh heterojunctions. Computational Materials Science, 2018, vol. 153, pp. 64–72. https://doi.org/10.1016/j.commatsci.2018.06.026
  22. Lee K. H., Kang D. J., Eom W., Lee H., Han T. H. Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy. Chemical Engineering Journal, 2022, vol. 430, article no. 132759. https://doi.org/10.1016/j.cej.2021.132759
  23. Lu A.-K., Li H.-Y., Yu Y. Holey graphene synthesized by electrochemical exfoliation for high-performance flexible microsupercapacitors. J. Mater. Chem. A, 2019, vol. 7, pp. 7852–7858. https://doi.org/10.1039/C9TA00792J
  24. Berrada S., Nguyen V. H., Querlioz D., Saint-Martin J., Alarcón A., Chassat C., Bournel A., Dollfus P. Graphene nanomesh transistor with high on/off ratio and good saturation behavior. Applied Physics Letters, 2013, vol. 103, article no. 183509. https://doi.org/10.1063/1.4828496
  25. Lin Y., Liao Y., Chen Z., Connell J. W. Holey graphene: a unique structural derivative of graphene. Materials Research Letters, 2017, vol. 5, iss. 4, pp. 209–234. https://doi.org/10.1080/21663831.2016.1271047
  26. Paul R. K., Badhulika S., Saucedo N. M., Mulchandani A. Graphene Nanomesh As Highly Sensitive Chemiresistor Gas Sensor. Analytical Chemistry, 2012, vol. 84, iss. 19, pp. 8171–8178. https://doi.org/10.1021/ac3012895
  27. Rabchinskii M. K., Ryzhkov S. A., Kirilenko D. A., Ulin N. V., Baidakova M. V., Shnitov V. V., Pavlov S. I., Chumakov R. G., Stolyarova D.Yu., Besedina N. A., Shvidchenko A. V., Potorochin D. V., Roth F., Smirnov D. A., Gudkov M. V., Brzhezinskaya M., Lebedev O. I., Melnikov V. P., Brunkov P. N. From graphene oxide towards aminated graphene: Facile synthesis, its structure and electronic properties. Scientific Reports, 2020, vol. 10, article no. 6902. https://doi.org/10.1038/s41598-020-63935-3
  28. Jung I., Jang H. Y., Park S. Direct growth of graphene nanomesh using a Au nano-network as a metal catalyst via chemical vapor deposition. Applied Physics Letters, 2013, vol. 103, article no. 023105. https://doi.org/10.1063/1.4813318
  29. Zhang J., Song H., Zeng D., Wang H., Qin Z., Xu K., Pang A., Xie C. Facile synthesis of diverse graphene nanomeshes based on simultaneous regulation of pore size and surface structure. Scientific Reports, 2016, vol. 6, article no. 32310. https://doi.org/10.1038/srep32310
  30. Koh K. H., Mostaghimi A. H. B., Chang Q., Kim Y. J., Siahrostami S., Han T. H., Chen Z. Elucidation and modulation of active sites in holey graphene electrocatalysts for H2O2 production. EcoMat., 2023, vol. 5, article no. e12266. https://doi.org/10.1002/eom2.12266
  31. Elstner M., Seifert G. Density functional tight binding. Philos. Trans. Royal Soc. A, 2014, vol. 372, article no. 20120483. https://doi.org/10.1098/rsta.2012.0483
  32. Hourahine B., Aradi B., Blum V., Bonafé F., Buccheri A., Camacho C., Cevallos C., Deshaye M. Y., Dumitrică T., Dominguez A., Ehlert S., Elstner M., van der Heide T., Hermann J., Irle S., Kranz J. J., Köhler C., Kowalczyk T., Kubař T., Lee I. S., Lutsker V., Maurer R. J., Min S. K., Mitchell I., Negre C., Niehaus T. A., Niklasson A. M. N., Page A. J., Pecchia A., Penazzi G., Persson M. P., Řezáč J., Sánchez C. G., Sternberg M., Stöhr M., Stuckenberg F., Tkatchenko A., Yu V. W.-z., Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys., 2020, vol. 152, article no. 124101. https://doi.org/10.1063/1.5143190
  33. Zobelli A., Ivanovskaya V., Wagner P., Suarez-Martinez I., Yaya A., Ewels C. A comparative study of density functional and density functional tight binding calculations of defects in graphene. Phys. Status Solidi B, 2012, vol. 249, iss. 2, pp. 276–282. https://doi.org/10.1002/pssb.201100630
  34. Rappe A. K., Casewit C. J., Colwell K. S., Goddard W. A., Skiff W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc., 1992, vol. 114, pp. 10024–10035. https://doi.org/10.1021/ja00051a040
  35. Rabchinskii M. K., Shnitov V. V., Dideikin A. T., Aleksenskii A. E., Vul S. P., Baidakova M. V., Pronin I. I., Kirilenko D. A., Brunkov P. N., Weise J., Molodtsov S. L. Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. Journal of Physical Chemistry C, 2016, vol. 12, iss. 49, pp. 28261–28269. https://doi.org/10.1021/acs.jpcc.6b08758
  36. Feng T., Ruan X. Ultra-low thermal conductivity in graphene nanomesh. Carbon, 2016, vol. 101, pp. 107–113. https://doi.org/10.1016/j.carbon.2016.01.082
  37. Mulliken R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. J. Chem. Phys., 1955, vol. 23, pp. 1833–1840. https://doi.org/10.1063/1.1740588
  38. Glukhova O. E., Barkov P. V. A new method for determining energetically favorable landing sites of carboxyl groups during the functionalization of graphene nanomesh. Letters on Materials, 2021, iss. 12, no. 4, pp. 392–396. https://doi.org/10.22226/2410-3535-2021-4-392-396
Received: 
19.12.2023
Accepted: 
05.03.2024
Published: 
28.06.2024