Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Vostretsov D. Y., Vostretsova L. N., Smirnova T. S., Dmitriev D. P. Influence of backlighting on current-voltage characteristics of InGaN / GaN-based structures with back-shift. Izvestiya of Sarat. Univ. Physics. , 2021, vol. 21, iss. 4, pp. 372-380. DOI: 10.18500/1817-3020-2021-21-4-372-380

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2021
Full text:
(downloads: 29)
Language: 
Russian
Article type: 
Article
UDC: 
621.315.592

Influence of backlighting on current-voltage characteristics of InGaN / GaN-based structures with back-shift

Autors: 
Vostretsov Dmitry Y., Ulyanovsk State University
Vostretsova Liubov Nikolaevna, Ulyanovsk State University
Smirnova Tatiana S., Ulyanovsk State University
Dmitriev Dmitry P., Ulyanovsk State University
Abstract: 

Object of study. We investigate Hewlett Packard green LEDs (λmax = 525 nm at room temperature) based on an InGaN solid solution with quantum wells. Purpose of the Study. It is known that in light-emitting structures, optical characteristics are closely related to electrical characteristics. Analysis of the literature has shown the effect of the structure (number and width of quantum wells) on the electrical characteristics of the objects under study. Thus, the determination of the parameters of structures based on GaN and its solid solutions from the analysis of electrical characteristics is an urgent problem. The aim of this work is to test the application of the generalized recombination model for analyzing the reverse current-voltage characteristics of InGaN-based structures under illumination. Methods and Approaches Used. The paper considers the reverse current-voltage characteristics of structures with quantum wells under illumination with the same “junction-to-junction” LED from the point of view of the generalized model of recombination. The results of measurements and calculations using the generalized recombination model are compared with the distribution profile of the dopant obtained from the inverse capacitance-voltage characteristics. Main Results. It has been shown that three processes are involved in the formation of reverse current-voltage characteristics under illumination: photogeneration, recombination, and tunneling. When the structure is illuminated with the same LED in quantum wells, the photorecombination process plays a leading role. An expression has been obtained that describes the current through the sample in this case.

Reference: 
  1. Bougrov V., Levinshtein M. E., Rumyantsev S. L., Zubrilov A. Gallium Nitride (GaN). In: M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, eds. Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. New York, John Wiley & Sons, Inc., 2001, pp. 1–30.
  2. Bulyarsky S. V., Grushko N. S. Generalized model of recombination in inhomogeneous semiconductor structures. J. of Exp. and Theor. Phys., 2000, vol. 91, iss. 5, pp. 1059–1065. https://doi.org/10.1134/1.1334996
  3. Bulyarsky S. V., Rud’ Yu. V., Vostretsova L. N., Kagarmanov A. S., Trifonov O. A. Tunneling recombination in nano-disordered semiconductor structures, Semiconductors, 2009, vol. 43, iss. 4, pp. 440 –446.
  4. Wetzel C., Kasumi M., Detchprohm T., Takeuchi T., Amano H., Akasaki I. Discrete Stark-Like Ladder in Piezoelectric GaInN/GaN Quantum Wells. Phys. Status Solidi Basic Res., 2002, vol. 216, no. 1, pp. 399–403.
  5. Grushko N. S., Loginova E. A., Potanakhina L. N. Tunneling recombination in spatially inhomogeneous structures. Semiconductors, 2006, vol. 40, no. 5, pp. 570–573.
  6. Grushko N. S., Vostretsova L. N., Ambrosevich A. S., Kagarmanov A. S. Effect of temperature on luminancecurrent characteristics of the InGaN light-emitting diode’s structure. Semiconductors, 2009, vol. 43, no. 10, pp. 1356–1362.
  7. Zhou R. L. (Zhou Renlin), Ikeda M. (Ikeda Masao), Zhang F. (Zhang Feng), Liu J. P. (Liu Jianping), Zhang S. M. (Zhang Shuming), Tian A. Q. (Tian Aiqin), Wen P. Y. (Wen Pengyan), Li D. Y. (Li Deyao), Zhang L. Q. (Zhang Liqun), Yang H. (Yang Hui). TotalInGaN-thickness dependent Shockley-Read-Hall recombination lifetime in InGaN quantum wells. Journal of Applied Physics, 2020, vol. 127, iss. 1, article number 013103.
  8. Tao X. X. (Tao Xixia), Liu J. L. (Liu Junlin), Zhang J. L. (Zhang Jianli), Mo C. L. (Mo Chunlan), Xu L. Q. (Xu Longquan), Ding J. (Ding Jie), Wang G. X. (Wang Guangxu), Wang X. L. (Wang Xiaolan), Wu X. M. (Wu Xiaoming), Quan Z. J. (Quan Zhijue). Performance enhancement of yellow InGaN-based multiple-quantum-well light-emitting diodes grown on Si substrates by optimizing the InGaN/GaN superlattice interlayer. Optical Materials Express, 2018, vol. 8, iss. 5, pp. 1221–1230.
  9. Batavin V. V., Kontsevoy Yu. A., Fedorovich Yu. V. Measurement of Parameters of Semiconductor Materials and Structures. Moscow, Radio i svyaz’ Publ., 1985. 264 p. (in Russian).
  10. Baranovskiy M. V., Glinskii G. F., Mironova M. S. Photoelectric diagnostics method for InGaN/GaN multiple-quantum-well heterostructures. Semiconductors, 2013, vol. 47, no. 1, pp. 58–62. https://doi.org/10.1134/S1063782613010053
  11. Bulyarsky S. V., Vostretsova L. N., Gavrilov S. A. Photodetectors based on CuInS2. Semiconductors, 2016, vol. 50, iss. 1, pp. 106–111.
  12. Grushko N. S., Loginova E. A., Potanakhina L. N. Determination of the parameters of recombination centers in spatially inhomogeneous structures. Zavodskaya laboratoriya. Diagnostika materialov [Zavod. Diagnostics of Materials], 2006, vol. 72, no. 2, pp. 25–29 (in Russian).
  13. Vostretsova L. N., Ambrozevich A. S., Kuznetsova T. E. Current-voltage characteristics of structures based on InGaN / GaN at a high level of injection. Bulletin of Higher Educational Institutions. Volga Region. Physical and Mathematical Sciences, 2019, no. 2 (50), pp. 75–86 (in Russian).
  14. Bulyarskiy S. V., Grushko N. S. Generation-recombination Processes in Active Elements. Moscow, Moscow University Press, 1995. 399 p. (in Russian).
  15. Zi S. Physics of Semiconductor Devices: in 2 books. Moscow, Mir Publ., 1984. Book 1. 456 p. (in Russian).
  16. Karetnikova I. R., Nefedov I. M., Shashkin V. I. The accuracy of reconstructing the semiconductor doping profile from capacitance-voltage characteristics measured during electrochemical etching. Semiconductors, 2001, vol. 35, iss. 7, pp. 766–772. https://doi.org/10.1134/1.1385710
Received: 
16.08.2021
Accepted: 
15.09.2021
Published: 
30.11.2021