Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Kozlowski A. V., Stetsyura S. V. Formation feature of organic polyelectrolyte layer on illuminated semiconductor substrate. Izvestiya of Sarat. Univ. Physics. , 2022, vol. 22, iss. 3, pp. 254-265. DOI: 10.18500/1817-3020-2022-22-3-254-265

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 67)
Article type: 

Formation feature of organic polyelectrolyte layer on illuminated semiconductor substrate

Kozlowski Alexander V., Saratov State University
Stetsyura Svetlana Viktorovna, Saratov State University

Introduction: The results of studying the formation processes of the Si/SiO2/polyethyleneimine hybrid structure at semiconductor substrate photostimulation during the polyethyleneimine adsorption are presented. The aim of the work was to determine the formation relationships of an organic polyelectrolyte layer onto illuminated semiconductor substrate as well as to describe the electronic processes in a hybrid structure responsible for organic layer parameters. A specific feature of the used approach was taking into account changes in the charge state of Si/SiO2/polyethyleneimine structure interfaces due to illumination as well as taking into account the influence of immobilized polyelectrolyte molecules charge. Thus, the developed model of polyelectrolytes photostimulated adsorption on a semiconductor takes into account the interinfluence of the substrate and the adsorbed layer, which reflects in the calculation of polyethyleneimine adsorption kinetics on the Si/SiO2 semiconductor substrate. Methods and Approaches: To verify the model, we used in calculations experimentally obtained values of the surface potential at each stage of the hybrid structure fabrication. Results and Discussions: The dependence of the thickness change of a polyelectrolyte molecules coating deposited on the surface both of p-Si and n-Si substrates on the time of photostimulated deposition has been obtained. It has been shown that with an increase in the illumination time during adsorption, a decrease in the thickness of the polyethyleneimine layer occurs according to an exponential law. The result is explained by the simultaneous occurrence of photogeneration of charge carriers, their drift into the SiO2 layer under the influence of cationic molecules electric field as well as by the characteristic times of these processes. The experimentally observed smoothing of the polyethyleneimine layer relief and a decrease in its effective thickness during photostimulated adsorption onto a photosensitive semiconductor substrate correspond to model concepts on the dependence of polyelectrolyte coating thickness on the effective charge of substrate surface. Conclusion: The results of the study are useful for understanding the mechanisms and regularities of the organic polyelectrolyte layer formation on an illuminated semiconductor substrate and contribute to the improvement of technologies for fabricating functional layers of hybrid structures “semiconductor-organic coating”.

This work was supported by the Russian Science Foundation (project No. 22-22-00194, https://rscf.ru/en/project/22-22-00194/).
  1. Poghossian A., Schöning M. J. Nanomaterial-Modified Capacitive Field-Effect Biosensors. In : Schoning M. J., Poghossian A., eds. Book of Label-Free Biosensing. Vol. 16. Series on Chemical Sensors and Biosensors. Germany, Cham, Springer. 2017, pp. 1–25. https://doi.org/10.1007/5346_2017_2
  2. Castillo M. L., Ugur A., Sojoudi H., Nakamura N., Liu Z., Lin F., Brandt R., Buonassisi T., Reeja-Jayan B., Gleason K. Organic passivation of silicon through multifunctional polymeric interfaces. Solar Energy Materials & Solar Cells, 2017, vol. 160, pp. 470–475. https://doi.org/10.1016/j.solmat.2016.10.050
  3. Ibadullaeva S. Z., Appazov N. O., Tarahovsky Y. S., Zamyatina E. A., Fomkina M. G., Kim Y. A. Аmperometric multi-enzyme biosensors : Development and application, a short review. Biophysics, 2019, vol. 64, no. 5, pp. 696–707. https://doi.org/10.1134/S0006350919050063
  4. Zhukov A. E., Moiseev E. I., Nadtochii A. M., Dragunova A. S., Kryzhanovskaya N. V., Kulagina M. M., Mozharov A. M., Kadinskaya S. A., Simchuk O. I., Zubov F. I., Maximov M. V. Lasing of Injection Microdisks with InAs/InGaAs/GaAs Quantum Dots Transferred to Silicon. Technical Physics Letters, 2020, vol. 46, iss. 8, pp. 783–786. https://doi.org/10.1134/S1063785020080295
  5. Decher G. Fuzzy Nanoassemblies : Toward Layered Polymeric Multi-composites. Science, 1997, vol. 277, iss. 5330, pp. 1232–1237. https://doi.org/10.1126/science.277.5330.1232
  6. Dobrynin A. V., Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci., 2005, vol. 30, iss. 11, pp. 1049–1118. https://doi.org/10.1016/j.progpolymsci.2005.07.006
  7. Dobrynin A. V., Deshkovski A., Rubinstein M. Adsorption of Poly-electrolytes at an Oppositely Charged Surface. Phys. Rev. Letters, 2000, vol. 84, iss. 14, pp. 3101–3104. https://doi.org/10.1103/PhysRevLett.84.3101
  8. De Carvalho S. J., Metzler R., Cherstvy A. G. Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces : the nonlinear Poisson– Boltzmann approach. New J. Phys., 2016, vol. 18, article no. 083037 (17 p.). https://doi.org/10.1088/1367-2630/18/8/083037
  9. Meyer W. L., Liu Y., Shi X.-W., Yang X., Bentley W. E., Payne G. F. Chitosan-Coated Wires : Conferring electrical properties to chitosan fibers. Biomacromolecules, 2009, vol. 10, no. 4, pp. 858–864. https://doi.org/10.1021/bm801364h
  10. Zhao N., Shi F., Wang Z., Zhang X. Combining Layerby-Layer Assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir, 2005, vol. 21, no. 10, pp. 4713–4716. https://doi.org/10.1021/la0469194
  11. Malyar I. V., Santer S., Stetsyura S. V. The Effect of Illumination on the Parameters of the Polymer Layer Deposited from Solution onto a Semiconductor Substrate. Technical Physics Letters, 2013, vol. 39, iss. 7, pp. 656– 659. https://doi.org/10.1134/S1063785013070183
  12. Malyar I. V., Gorin D. A., Santer S., Stetsyura S. V. Photocon-trolled Adsorption of Polyelectrolyte Molecules on a Silicon Substrate. Langmuir, 2013, vol. 29, iss. 52, pp. 16058–16065. https://doi.org/10.1021/la403838n
  13. Baru V. G., Volkenstein F. F. Vliyanie oblucheniya na poverkhnostnye svojstva poluprovodnikov [The Effect of Irradiation on Surface Properties of Semiconductors]. Moscow, Nauka Publ., 1978. 288 p. (in Russian).
  14. Volkov I. L., Bazlov N. V., Bondarenko A. S., Vyvenko O. F., Kasyanenko N. A. Development of method for noncovalent DNA fixation on monocrystal silicon surface. Vestnik Sankt-Peterburgskogo unta. Seriya 4. Fizika. Khimiya, 2009, iss. 3, pp. 45–51 (in Russian).
  15. Volkov I. L., Bazlov N. V., Bondarenko A. S., Vyvenko O. F., Kas’yanenko N. A. Light-induced noncovalent fixation of DNA and synthetic polyions on the surface of silicon single crystals. Journal of Structural Chemistry, 2009, vol. 50, no. 5, рp. 962–969.
  16. Tkhyui M. D., Mikhalenko I. I. Photostimulated adsorption of pyridine on titanium dioxide with Ag+, Cu+2 , Au+3 . Fizicheskaya khimiya poverkhnostny‘kh yavlenij i adsorbtsii : trudy III nauchnoj konferencii [Physical Chemistry of Surface Phenomena and Adsorption : Proceedings of the III Scientific Conference]. Ivanovo, Ples, Izd-vo Ivan. gos. khim.-tekhnol. un-ta, 2012, pp. 56– 58. Available at: https://www.isuct.ru/nhit/fkh/files/2012.pdf (accessed 30 April 2022) (in Russian).
  17. Wu C., Poghossian A., Bronder T. S., Schöning M. J. Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor. Sensors and Actuators B : Chemical, 2016, vol. 229, pp. 506–512. https://doi.org/10.1016/j.snb.2016.02.004
  18. Malyar I. V., Stetsyura S. V. The Effect of Illumination on Conformation of Polyelectrolyte Molecules during Adsorption onto Semiconductor Substrate. Izvestiya of Saratov University. Physics, 2014, vol. 14, iss. 2, pp. 49– 52 (in Russian). https://doi.org/10.18500/1817-3020-2014-14-2-49-52
  19. Simakov V. V., Sinev I. V., Smirnov A. V., Osyko I. D., Grebennikov A. I. Influence of water vapor and illumination on the conductivity of thin films of tin dioxide at room temperature. Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov, 2017, iss. 9, pp. 449–454 (in Russian).
  20. Ding J., McAvoy T. J., Cavicchi R. I., Semancik S. Surface state trapping models for SnO2-based microhotplate sensors. Sensors and Actuators B : Chemical, 2001, vol. 77, iss. 3, pp. 597–613. https://doi.org/10.1016/S0925-4005(01)00765-1
  21. Sousa M. A. M., Siqueira J. R., Vercik A., Schöning M. J., Oliveira O. N. Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors. IEEE Sensors Journal, 2017, vol. 17, no. 6, pp. 1735–1740. https://doi.org/10.1109/JSEN.2017.2653238
  22. Demoz A., Verpoorte E. M. J., Harrison D. J. An equivalent circuit model of ion-selective membrane|insulator|semiconductor interfaces used for chemical sensors. Journal of Electroanalytical Chemistry, 1995, vol. 389, iss. 1–2, pp. 71–78. https://doi.org/10.1016/0022-0728(95)03836-6
  23. Chang C. Y., Kang B. S., Wang H. T., Ren F., Wang Y. L., Pearton S. J., Dennis D. M., Johnson J. W., Rajagopal P., Roberts J. C., Piner E. L., Linthicum K. J. CO2 detection using polyethylenimine/starch functionalized AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2008, vol. 92, iss. 23, article no. 232102 (3 p.). https://doi.org/10.1063/1.2937126
  24. Gorin D. A., Yashchenok A. M., Manturov A. O., Kolesnikova T. A., Möhwald H. Effect of Layer-byLayer Electrostatic Assemblies on the Surface Potential and Current Voltage Characteristic of Metal-InsulatorSemiconductor Structures. Langmuir, 2009, vol. 25, iss. 21, pp. 12529–12534. https://doi.org/10.1021/la901379d
  25. Garrett C. G. B., Brattain W. H. Physical theory of semiconductor surface. Physical Review, 1955, vol. 99, iss. 2, pp. 376–387. https://doi.org/10.1103/PhysRev.99.376
  26. Rzhanov A. V. Elektronnye protsessy na poverkhnosti poluprovodnikov [Electronic Processes on the Surface of Semiconductors]. Moscow, Nauka Publ., 2001. 480 p. (in Russian).
  27. Peka G. P. Fizika poverkhnosti poluprovodnikov [Physics of the Surface of Semiconductors]. Kyiv, Izdvo Kiev. un-ta, 1997. 190 p. (in Russian).
  28. Stetsyura S. V., Kozlowski A. V. The influence of photoelectron processes in a semiconductor substrate on the adsorption of polycationic and polyanionic molecules. Technical Physics Letters, 2017, vol. 43, iss. 3, pp. 285–288 (in Russian). https://doi.org/10.1134/S1063785017030233
  29. Mizsei J. Ultra-thin Insulator Covered Silicon : Potential Barriers and Tunnel currents. Solid-State Electron, 2002, vol. 46, iss. 2, pp. 235–241. https://doi.org/10.1016/S0038-1101(01)00300-8
  30. Shalimova K. V. Fizika poluprovodnikov [Physics of Semiconductors]. Saint Petersburg, Lan’ Publ., 2010. 400 p. (in Russian).
  31. Bogatyrenko V. V. A Technique for Characterizing Surface Recombination in Silicon Wafers Based on Thermal-Emission Measurements. Semiconductors, 2010, vol. 44, no. 3, pp. 392–395 (in Russian). https://doi.org/10.1134/S1063782610030206
  32. Sze S. M. Physics of Semiconductor Devices. 2nd ed. New York, Wiley, 1981. 880 p.