Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Slepchenkov M. M., Barkov P. V., Glukhova O. E. Features of the atomic structure and electronic properties of hybrid films formed by single-walled carbon nanotubes and bilayer graphene. Izvestiya of Saratov University. Physics , 2021, vol. 21, iss. 4, pp. 302-314. DOI: 10.18500/1817-3020-2021-21-4-302-314, EDN: CVXCQW

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 233)
Article type: 

Features of the atomic structure and electronic properties of hybrid films formed by single-walled carbon nanotubes and bilayer graphene

Slepchenkov Mikhail Mikhailovich, Saratov State University
Barkov Pavel V., Saratov State University
Glukhova Olga Evgen'evna, Saratov State University

The combination of carbon nanotubes and graphene opens up wide opportunities for the production of nanomaterials with customizable properties and their application in the development of the element base of nanoelectronic devices. To control the properties of hybrid structures formed by graphene and nanotubes, it is important to understand the regularities of physical processes in them at the atomic level. Methods of computer modeling are an effective tool for solving this problem. The purpose of research is to identify the regularities of the influence of the atomic structure features on the electronic properties of hybrid films formed by bilayer graphene and single-walled carbon nanotube of various topologies. Materials and Methods: Energetically stable supercells of four atomic configurations of graphene-nanotube hybrid films were constructed on the basis of nanotubes (5,5), (6,0), (12,6) and (16,0). The analysis of the band structure and distribution of the density of electronic states was carried out for the constructed supercells using a density functional based tight binding method. Results: It has been revealed that the graphene-(5,5) and graphene-(16,0) configurations have a metallic type of conductivity, while the graphene-(6,0) and graphene-(12,6) configurations are characterized by the presence energy gap between the valence band and the conduction band. It has been found that nanotubes play a decisive role in the formation of the density of states profile of hybrid films. The key factor in determining the type of conductivity of hybrid films is the mutual orientation of nanotubes and graphene in the composition of the film. Conclusion: Thus, by varying the chirality of nanotubes and the method of their arrangement relative to graphene, one can control the electronic properties of hybrid graphene-nanotube films.

This work was funded by the Grant Council of the President of the Russian Federation for the state support of young Russian scientists – candidates of science (project No. MK-2289.2021.1.2) (construction and assessment of the energy stability of atomistic models of graphene-nanotube hybrid structures) and by the Russian Science Foundation (project No. 21-19-00226) (calculations of the band structure and interpretation of the obtained results).
  1. Du W., Ahmed Z., Wang Q., Yu C., Feng Z., Li G., Zhang M., Zhou C., Senegor R., Yang C. Y. Structures, properties, and applications of CNT-graphene heterostructures. 2D Materials, 2019, vol. 6, iss. 4, pp. 042005. https://doi.org/10.1088/2053-1583/ab41d3
  2. Gbaguidi A., Namilae S., Kim D. Synergy effect in hybrid nanocomposites based on carbon nanotubes and graphene nanoplatelets. Nanotechnology, 2020, vol. 31, iss. 25, pp. 255704. https://doi.org/10.1088/1361-6528/ab7fcc
  3. Xia K., Zhan H., Gu Y. Graphene and Carbon Nanotube Hybrid Structure: A Review. Procedia IUTAM, 2017, vol. 21, pp. 94–101. https://doi.org/10.1016/j.piutam.2017.03.042
  4. Zhang J., Chen Z., Xu X., Liao W., Yan L. A simple and efficient approach to fabricate graphene/CNT hybrid transparent conductive films. RSC Advances, 2017, vol. 7, iss. 83, pp. 52555–52560. https://doi.org/10.1039/C7RA09809J
  5. Nguyen D. D., Tiwari R. N., Matsuoka Y., Hashimoto G., Rokuta E., Chen Y. Z., Chueh Y. L., Yoshimura M. Low Vacuum Annealing of Cellulose Acetate on Nickel Towards Transparent Conductive CNT−Graphene Hybrid Films. ACS Appl. Mater. Interfaces, 2014, vol. 6, iss, 12, pp. 9071−9077. https://doi.org/10.1021/am5003469
  6. Wang R., Hong T., Xu Y.-Q. Ultrathin single-walled carbon nanotube network framed graphene hybrids. ACS Appl. Mater. Interfaces, 2015, vol. 7, iss. 9, pp. 5233–5238. https://doi.org/10.1021/am5082843
  7. Ghosh R., Maruyama T., Kondo H., Kimoto K., Nagai T., Iijima S. Synthesis of single-walled carbon nanotubes on graphene layers. Chem. Commun., 2015, vol. 51, iss. 43, pp. 8974–8977. https://doi.org/10.1039/C5CC02208H
  8. Chuc N. V., Thanh C. T., Tu N. V., Phuong V. T. Q., Thang P. V., Tam N. T. T. A simple approach to the fabrication of graphene-carbon nanotube hybrid films on copper substrate by chemical vapor deposition. J. Mater. Sci. Technol., 2015, vol. 31, iss. 5, pp. 479–483. https://doi.org/10.1016/j.jmst.2014.11.027
  9. Kuang J., Dai Z., Liu L., Yang Z., Jinc M., Zhang Z. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, vol. 7, iss. 20, pp. 9252–9260. https://doi.org/10.1039/C5NR00841G
  10. Zhu Y., Li L., Zhang C., Casillas G., Sun Z., Yan Z., Ruan G., Peng Z., Raji A. R. O., Kittrell C., Hauge R. H., Tour J. M. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun., 2012, vol. 3, pp. 1225. https://doi.org/10.1038/ncomms2234
  11. Sun D., Liu C., Ren W., Cheng H. A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors. Small, 2013, vol. 9, iss. 8, pp. 1188–1205. https://doi.org/10.1002/smll.201203154
  12. Shi E., Li H., Yang L., Hou J., Li Y., Li L., Cao A., Fang Y. Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics. Adv. Mater., 2015, vol. 27, iss. 4, pp. 682–688. https://doi.org/10.1002/adma.201403722
  13. Dang V. T., Nguyen D. D., Cao T. T., Le P. H., Tran D. L., Phan N. M., Nguyen V. C. Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, vol. 7, iss. 3, pp. 033002. https://doi.org/10.1088/2043-6262/7/3/033002
  14. Zhang C., Liu T. X. A review on hybridization modification of graphene and its polymer nanocomposites. Chin. Sci. Bull., 2012, vol. 57, iss. 23, pp. 3010–3021. https://doi.org/10.1007/s11434-012-5321-x
  15.  Lv R., Cruz-Silva E., Terrones M. Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene-Nanotube Hybrids and More. ACS Nano, 2014, vol. 8, iss. 5, pp. 4061–4069. https://doi.org/10.1021/nn502426c
  16. Kim S. H., Song W., Jung M. W., Kang M. A., Kim K., Chang S. J., Lee S. S., Lim J., Hwang J., Myung S., An K. S. Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors. Adv. Mater., 2014, vol. 26, iss. 25, pp. 4247–4252. https://doi.org/10.1002/adma.201400463
  17. Kholmanov I. N., Magnuson C. W., Piner R., Kim J. Y., Aliev A. E., Tan C., Kim T. Y., Zakhidov A. A., Sberveglieri G., Baughman R. H., Ruoff R. S. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater., 2015, vol. 27, iss. 19, pp. 3053–3059. https://doi.org/10.1002/adma.201500785
  18. Li L., Li H., Guo Y., Yang L., Fang Y. Direct synthesis of graphene/carbon nanotube hybrid films from multiwalled carbon nanotubes on copper. Carbon, 2017, vol. 118, pp. 675–679. https://doi.org/10.1016/j.carbon.2017.03.078
  19. Zhou W., Bai X., Wang E., Xie S. Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes. Adv. Mater., 2009, vol. 21, iss. 45, pp. 4565–4583. https://doi.org/10.1002/adma.200901071
  20. Gan X., Lv R., Bai J., Zhang Z., Wei J., Huang Z. H., Zhu H., Kang F., Terrones M. Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors. 2D Mater., 2015, vol. 2, iss. 3, pp. 034003. https://doi.org/10.1088/2053-1583/2/3/034003
  21. Yan Z., Peng Z., Casillas G., Lin J., Xiang C., Zhou H., Yang Y., Ruan G., Raji A. R. O., Samuel E. L. G., Hauge R. H., Yacaman M. J., Tour J. M. Rebar graphene. ACS Nano, 2014, vol. 8, iss. 5, pp. 5061–5068. https://doi.org/10.1021/nn501132n
  22. Li X. L., Sha J. W., Lee S. K., Li Y. L., Ji Y. S., Zhao Y. J., Tour J. M. Rivet graphene. ACS Nano, 2016, vol. 10, iss. 8, pp. 7307–7313. https://doi.org/10.1021/acsnano.6b03080
  23. Lin X., Liu P., Wei Y., Li Q., Wang J., Wu Y., Feng C., Zhang L., Fan S., Jiang K. Development of an ultrathin film comprised of a graphene membrane and carbon nanotube vein support. Nat. Commun., 2013, vol. 4, pp. 2920. https://doi.org/10.1038/ncomms3920
  24. Liu Y., Wang F., Wang X., Wang X., Flahaut E., Liu X., Li Y., Wang X., Xu Y., Shi Y., Zhang R. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat. Commun., 2015, vol. 6, pp. 8589. https://doi.org/10.1038/ncomms9589
  25. Kumar P., Woon K. L., Wong W. S., Saheed M. S. M., Burhanudin Z. A. Hybrid film of single-layer graphene and carbon nanotube as transparent conductive electrode for organic light emitting diode. Synth. Met., 2019, vol. 257, pp. 116186. https://doi.org/10.1016/j.synthmet.2019.116186
  26. Kim H., Kim J., Jeong H. S., Kim H., Lee H., Ha J. M., Choi S. M., Kim T. H., Nah Y. C., Shin T. J., Bang J., Satija S. K., Koo J. Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid-gas interface for Li-ion battery anodes. Chem. Commun., 2018, vol. 54, iss. 41, pp. 5229–5232. https://doi.org/10.1039/C8CC02148A
  27. Cai B., Yin H., Huo T., Ma J., Di Z., Li M., Hu N., Yang Z., Zhang Y., Su Y. Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors. J. Mater. Chem. C, 2020, vol. 8, iss. 10, pp. 3386–3394. https://doi.org/10.1039/C9TC06586E
  28. Hong X., Shi W., Zheng H., Liang D. Effective carbon nanotubes/graphene hybrid films for electron field emission application. Vacuum, 2019, vol. 169, pp. 108917. https://doi.org/10.1016/j.vacuum.2019.108917
  29. Liu Y., Liu Y., Qin S., Xu Y., Zhang R., Wang F. Graphenecarbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res., 2017, vol. 10, iss. 6, pp. 1880–1887. https://doi.org/10.1007/s12274-016-1370-9
  30. Wang Z., Li J., Yuan K. Molecular dynamics simulation of thermal boundary conductance between horizontally aligned carbon nanotube and graphene. Int. J. Therm. Sci., 2018, vol. 132, pp. 589–596. https://doi.org/10.1016/j.ijthermalsci.2018.07.004
  31. Lepak-Kuc S., Milowska K. Z., Boncel S., Szybowicz M., Dychalska A., Jozwik I., Koziol K. K., Jakubowska M., Lekawa-Raus A. Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires. ACS Appl. Mater. Interfaces, 2019, vol. 11, iss. 36, pp. 33207–33220. https://doi.org/10.1021/acsami.9b08198
  32. Srivastava J., Gaur A. Tight-binding investigation of the structural and vibrational properties of graphene–single wall carbon nanotube junctions. Nanoscale Adv., 2021, vol. 3, iss. 7, pp. 2030–2038. https://doi.org/10.1039/D0NA00881H
  33. Elstner M., Seifert G. Density functional tight binding. Philos. Trans. Royal Soc. A, 2014, vol. 372, pp. 20120483. https://doi.org/10.1098/rsta.2012.0483
  34. Hourahine B., Aradi B., Blum V., Bonafé F., Buccheri A., Camacho C., Cevallos C., Deshaye M.Y., Dumitrică T., Dominguez A., Ehlert S., Elstner M., van der Heide T., Hermann J., Irle S., Kranz J. J., Köhler C., Kowalczyk T., Kubař T., Lee I. S., Lutsker V., Maurer R. J., Min S. K., Mitchell I., Negre C., Niehaus T. A., Niklasson A. M. N., Page A. J., Pecchia A., Penazzi G., Persson M. P., Řezáč J., Sánchez C.G., Sternberg M., Stöhr M., Stuckenberg F., Tkatchenko A., Yu V. W., Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys., 2020, vol. 152, iss. 12, pp. 124101. https://doi.org/10.1063/1.5143190
  35. DFTB+ Density Functional Based Tight Binding (and more). Available at: https://dftbplus.org/ (accessed 12 May 2020).
  36. Zobelli A., Ivanovskaya V., Wagner P., Suarez-Martinez I., Yaya A., Ewels C. A comparative study of density functional and density functional tight binding calculations of defects in graphene. Phys. Status Solidi B, 2012, vol. 249, iss. 2, pp. 276–282. https://doi.org/10.1002/pssb.201100630
  37. Zhang S., Kang L., Wang X., Tong L., Yang L., Wang Z., Qi K., Deng S., Li Q., Bai X., Ding F., Zhang J. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature, 2017, vol. 543, pp. 234–238. https://doi.org/10.1038/nature21051
  38. Yang F., Wang X., Zhang D., Qi K., Yang J., Xu Z., Li M., Zhao X., Bai X., Li Y. Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts. J. Am. Chem. Soc., 2015, vol. 137, iss. 27, pp. 8688–8691. https://doi.org/10.1021/jacs.5b04403
  39. Correa J. D., Florez E., Mora-Ramos M. E. Ab initio study of hydrogen chemisorption in nitrogen-doped carbon nanotubes. Phys. Chem. Chem. Phys., 2016, vol. 18, iss. 36, pp. 25663–25670. https://doi.org/10.1039/C6CP04531F
  40. Sahu R. K., Mukherjee V., Dash T., Padhan S. K., Nayak B. B. Vibrational and electronic properties of (5,0) zigzag and (5,5) armchair carbon and SiC nanotubes using density functional theory. Phys. B: Condens. Matter., 2021, vol. 615, pp. 413074. https://doi.org/10.1016/j.physb.2021.413074
  41. Symalla F., Shallcross S., Beljakov I., Fink K., Wenzel W., Meded V. Band-gap engineering with a twist: Formation of intercalant superlattices in twisted graphene bilayers. Phys. Rev. B, 2015, vol. 91, iss. 20, pp. 205412. https:// doi.org/10.1103/PhysRevB.91.205412