Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Zayko Y. N. An Explicit Solutions of the Maxwell-Einstein Equations. Izvestiya of Saratov University. Physics , 2010, vol. 10, iss. 1, pp. 50-58. DOI: 10.18500/1817-3020-2010-10-1-50-58

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 153)
537.8; 539.186.2

An Explicit Solutions of the Maxwell-Einstein Equations

Zayko Yuri Nikolaevich, Stolypin’s Volga Regional Academy of State Service

This article concerns the effect of gravitation field of the spherical electro-magnetic wave (EMW) on its propagation in vacuum. For this it was received a solution of the coupled Maxwell-Einstein equations. The expression for metric is supposed to be just the same as in wellknown Schwarzschild problem for gravitation field at the vicinity of point mass with additional dependence on polar angle 9. The equations for radial and angular parts of EMW fields of ТЕ- and TM-types are received. Their various solutions are Investigated. It is shown that in addition with traveling wave EMW at a great distance some new solution of so-called instanton type exists. It describes the process of quantum tunneling between degenerate states corresponding to convergent and divergent spherical waves in quasiclassical approximation. An explicit solutions for waves of both types are received so as an expressions for corresponding metrics. The solutions of the Maxwell-Einstein (Maxwell) equations are considered for waves which have zero value of moment momentum. It was shown that in static case they describe fields of point charges - electric e and magnetic m. It was shown that symmetry of Maxwell equations with respect to group L/(1) of dual transformations: (E+/H)-> (E+iH)'", E and H are electric and magnetic fields, a - is real parameter is valid for generalized charge e + im, which is transformed in the same manner. Spontaneous breaking of symmetry of this group, which is characterized tga = -m/e, leads to arising massless particles - photons due to Goldstone theorem. This also leads to the fact that magnetic charges cannot detect in Nature.

  1. Ландау Л.Д.. Лифшиц Е.М. Теория поля. М.: Наука, 1967.460 с.
  2. Толмен Р. Относительность, термодинамика и космология / Пер. с англ.; Под ред. Я.А. Смородинского. М.: Наука, 1974. 520 с.
  3. Арфкен Г. Математические методы в физике. М.: Атомиздат, 1970. 712 с.
  4. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн. М.; Л.: Энергия, 1966. 376 с.
  5. Раджараман Р. Солитоны и инстантоны в квантовой теории поля / Пер. с англ.; Под ред. О.А. Хрусталева. М.: Мир, 1985.414 с.
  6. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Гос. изд-во физ.-мат. лит., 1958.678 с.
  7. Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. М.: Наука, 1989. 544 с.
  8. Carver А. Mead. Collective Electrodynamics I // Feynmann and Computation. Exploring the Limits of Computers / Ed. by A.J.G. Hey. Massachusetts: Perseus Books, Reading, 1998. 438 p.
  9. Долгов А.Д. Магнитный монополь // Физическая энциклопедия: В 5 т. М.: Сов. энцикл., 1990. T.2. С.687-688. 
  10. Берестецкий В.Б. Проблемы физики элементарных частиц. М.: Наука, 1979. 256 с.
  11. Берестецкий В.Б., Лифшиц Е.М., Питаевский Л.П. Релятивистская квантовая теория. М.: Наука, 1968. 480 с.
  12. Неванлинна Р. Пространство, время и относительность / Пер с нем. Г.А. Вольперта; Под ред И.М. Яглома. М.: Мир, 1966. 231 с.
  13. Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной / Пер. с англ.; Под ред. Я.Б. Зельдовича. М.: Энергоатомиздат, 1981. 209 с.