Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Khivintsev Y. V., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Pavlov E. S., Vysotskii S. L., Filimonov Y. A. Effects of geometry of thin-film microwaveguides based on yttrium iron garnet and position of microantennas on characteristics of excitation and transmission of magnetostatic waves in them. Izvestiya of Saratov University. Physics , 2021, vol. 21, iss. 3, pp. 249-263. DOI: 10.18500/1817-3020-2021-21-3-249-263, EDN: FZBVOV

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.08.2021
Full text:
(downloads: 351)
Language: 
Russian
Article type: 
Article
UDC: 
537.876.4:537.635
EDN: 
FZBVOV

Effects of geometry of thin-film microwaveguides based on yttrium iron garnet and position of microantennas on characteristics of excitation and transmission of magnetostatic waves in them

Autors: 
Khivintsev Yuri Vladimirovich, Saratov State University
Kozhevnikov Aleksander Vladimirovich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Sakharov Valentin Konstantinovich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Dudko Galina Mikhailovna, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Pavlov Evgeniy Sergeevich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Vysotskii Sergei Lvovich, Saratov State University
Filimonov Yuri Aleksandrovich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Abstract: 

Background and Objectives: Magnetic thin film waveguides of a finite width are considered as the main building blocks for magnonic circuits where the magnetostatic waves are the information carriers. The purpose of this study is to investigate experimentally the effects of the waveguides width, position of microantennas for excitation and detection of the magnetostatic waves, coupling between the waveguides on excitation and transmission characteristics of the magnetostatic waves for the waveguides with the width of ~10 μm based on an yttrium iron garnet film (material that has the lowest magnetostatic wave damping among all known magnetic materials). Materials and Methods: A set of the microwaveguides with the specified width of 15, 10 and 5 μm and with different position of the microantennas integrated with the waveguide as well as systems of two close parallel waveguides with the microantennas was fabricated out of 0.9 μm thick yttrium iron garnet film using photolithography, ion etching and magnetron sputtering. Measurements of the transmission and reflection coefficients as a function of the frequency were performed by a vector network analyzer along with a microwave probe station. The bias field was applied tangentially along or perpendicular to the waveguide. Results and Conclusions: It is found that the used technology provided ~70° tilt of the waveguides sidewalls from the vertical direction. It is also revealed that placing the microantennas near the ends of the waveguides reduces the efficiency of excitation of the long-wavelength part of the magnetostatic waves spectrum. In addition, such an arrangement of antennas was characterized by the absence of the features associated with the excitation of the magnetostatic wave width modes. The latter effect can be used for filtering the width modes if necessary. It is shown that, for ~15 μm wide waveguides based on 0.9 μm thick yttrium iron garnet film, there is a significant (~0.5 GHz) overlap of the spectra of the fundamental modes of magnetostatic surface wave and magnetostatic backward volume wave in transversely and longitudinally magnetized microwaveguides, respectively, at the bias field in the range of 0.5–1.5 kOe. This width can be considered close to optimal for constructing structures from orthogonal waveguides based on such thick yttrium iron garnet films. A further decrease in the width leads to an undesirable decrease in the transmission coefficient. In addition, in this case, the shape anisotropy effect can be excessively strong and move a part of the magnetostatic surface and backward volume waves spectra, narrowing the region of their overlap. It is also shown that for two parallel microwaveguides with a width and distance between them Твердотельная электроника, микро- и наноэлектроника 251 of ~15 μm, the excitation of the magnetostatic wave in one of them leads to energy transfer to the adjacent waveguide with an efficiency of ~ -10–15 dB due to the coupling between the waveguides. This effect must be taken into account when miniaturizing magnonic networks.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 17-19-01673).
Reference: 
  1. Mahmoud A., Ciubotaru F., Vanderveken F., Chumak A. V., Hamdioui S., Adelmann C., Cotofana S. Introduction to spin wave computing. J. Appl. Phys., 2020, vol. 128, 161101. https://doi.org/10.1063/5.0019328
  2. Kruglyak V. V., Demokritov S. O., Grundler D. Magnonics. J. Phys. D: Appl. Phys., 2010, vol. 43, 264001. https://doi.org/10.1088/0022-3727/43/26/264001
  3. Nikitov S. A., Kaliabin D. V., Lisenkov I. V., Slavin A. N., Barabanenkov Yu. N., Osokin S. A., Sadovnikov A. V., Beginin E. N., Morozova M. A., Sharaevskii Yu. P., Filimonov Y. A., Khivintsev Y. V., Vysotskii S. L., Sakharov V. K., Pavlov E. S. Magnonics: A new research area in spintronics and spin wave electronics. Phys. Usp., 2015, vol. 58, pp. 1002–1028. https://doi.org/10.3367/UFNe.0185.201510m.1099
  4. Chumak A. V., Vasyuchka V. I., Serga A. A., Hillebrands B. Magnon spintronics. Nature Phys., 2015, vol. 11, pp. 453–461. https://doi.org/10.1038/nphys3347
  5. Chumak A. V., Schultheiss H. Magnonics: Spin waves connecting charges, spins and photons. J. Phys. D: Appl. Phys., 2017, vol. 50, 300201. https://doi.org/10.1088/1361-6463/aa7715
  6. Csaba G., Papp Á., Porod W. Perspectives of using spin waves for computing and signal processing. Phys. Lett. A, 2017, vol. 381, iss. 17, pp. 1471–1476. https://doi.org/10.1016/j.physleta.2017.02.042
  7. Khitun A., Wang K. Nano scale computational architectures with spin wave bus. Superlattices & Microstructures, 2005, vol. 38, pp. 184–200. https://doi.org/10.1016/j.spmi.2005.07.001
  8. Kostylev M. P., Serga A. A., Schneider T., Leven B., Hillebrands B. Spin-wave logical gates. Appl. Phys. Lett., 2005, vol. 87, 153501. https://doi.org/10.1063/1.2089147
  9. Schneider T., Serga A. A., Leven B., Hillebrands B., Stamps R. L., Kostylev M. P. Realization of spin-wave logic gates. Appl. Phys. Lett., 2008, vol. 92, 022505. https://doi.org/10.1063/1.2834714
  10. Lee K.-S., Kim S.-K. Conceptual design of spin wave logic gates based on a Mach-Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys., 2008, vol. 104, 053909. https://doi.org/10.1063/1.2975235
  11. Klingler S., Pirro P., Brächer T., Leven B., Hillebrands B., Chumak A. V. Design of a spin-wave majority gate employing mode selection. Appl. Phys. Lett., 2014, vol. 105, 152410. https://doi.org/10.1063/1.4898042
  12. Klingler S., Pirro P., Brächer T., Leven B., Hillebrands B., Chumak A. V. Spin-wave logic devices based on isotropic forward volume magnetostatic waves. Appl. Phys. Lett., 2015, vol. 106, 212406. https://doi.org/10.1063/1.4921850
  13. Fischer T., Kewenig M., Bozhko D. A., Serga A. A., Syvorotka I. I., Ciubotaru F., Adelmann C., Hillebrands B., Chumak A. V. Experimental prototype of a spin-wave majority gate. Appl. Phys. Lett., 2017, vol. 110, 152401. https://doi.org/10.1063/1.4979840
  14. Khitun A., Kozhanov A. Magnonic logic devices. Izv. Saratov Univ. Physics, 2017, vol. 17, iss. 4, pp. 216–241. https://doi.org/10.18500/1817-3020-2017-17-4-216-241
  15. Balynsky M., Kozhevnikov A., Khivintsev Y., Bhowmick T., Gutierrez D., Chiang H., Dudko G., Filimonov Y., Liu G., Jiang G., Balandin A. A., Lake R., Khitun A. Magnonic interferometric switch for multi-valued logic circuits. J. Appl. Phys., 2017, vol. 121, pp. 024504. https://doi.org/10.1063/1.4973115
  16. Balynskiy M., Chiang H., Gutierrez D., Kozhevnikov A., Filimonov Y., Khitun A. Reversible magnetic logic gates based on spin wave interference. J. Appl. Phys., 2018, vol. 123, 144501. https://doi.org/10.1063/1.5011772
  17. Khitun A. Magnonic holographic devices for special type data processing. J. Appl. Phys., 2013, vol. 113, 164503. https://doi.org/10.1063/1.4802656
  18. Kozhevnikov A., Gertz F., Dudko G., Filimonov Y., Khitun A. Pattern recognition with magnonic holographic memory device. Appl. Phys. Lett., 2015, vol. 106, 142409. https://doi.org/10.1063/1.4917507
  19. Gertz F., Kozhevnikov A., Filimonov Y., Khitun A. Magnonic holographic memory. IEEE Trans. Magn., 2015, vol. 51, pp. 4002905. https://doi.org/10.1109/TMAG.2014.2362723
  20. Gutierrez D., Chiang H., Bhowmick T., Volodchenkov A. D., Ranjbar M., Liu G., Jiang C., Warren C., Khivintsev Y., Filimonov Y., Garay J., Lake R., Balandin A. A., Khitun A. Magnonic holographic imaging of magnetic microstructures. J. Magn. Magn. Mater., 2017, vol. 428, pp. 348–356. https://doi.org/10.1016/j.jmmm.2016.12.022
  21. Khivintsev Y., Ranjbar M., Gutierrez D., Chiang H., Kozhevnikov A., Filimonov Y., Khitun A. Prime factorization using magnonic holographic devices. J. Appl. Phys., 2016, vol. 120, 123901. https://doi.org/10.1063/1.4962740
  22. Vogt K., Fradin F. Y., Pearson J. E., Sebastian T., Bader S. D., Hillebrands B., Hoffmann A. P., Schultheiss H. Realization of a spin-wave multiplexer. Nat. Commun., 2014, vol. 5, pp. 3727. https://doi.org/10.1038/ncomms4727
  23. Davies C. S., Francis A., Sadovnikov A. V., Chertopalov S. V., Bryan M. T., Grishin S. V., Allwood D. A., Sharaevskii Y. P., Nikitov S. A., Kruglyak V. V. Towards graded-index magnonics: Steering spin waves in magnonic networks. Phys. Rev. B, 2015, vol. 92, 020408. https://doi.org/10.1103/PhysRevB.92.020408
  24. Sadovnikov A. V., Davies C. S., Grishin S. V., Kruglyak V. V., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A. Magnonic beam splitter: The building block of parallel magnonic circuitry. Appl. Phys. Lett., 2015, vol. 106, 192406. https://doi.org/10.1063/1.4921206
  25. Sadovnikov A. V., Beginin E. N., Sheshukova S. E., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes. Appl. Phys. Lett., 2015, vol. 107, 202405. https://doi.org/10.1063/1.4936207
  26. Davies C. S., Sadovnikov A. V., Grishin S. V., Sharaevsky Y. P., Nikitov S. A., Kruglyak V. V. Field-controlled phase-rectified magnonic multiplexer. IEEE Trans. Magn., 2015, vol. 51, 3401904. https://doi.org/10.1109/TMAG.2015.2447010
  27. Sadovnikov A. V., Beginin E. N., Odincov S. A., Sheshukova S. E., Sharaevskii Y. P., Stognij A. I., Nikitov S. A. Frequency selective tunable spin wave channeling in the magnonic network. Appl. Phys. Lett., 2016, vol. 108, pp. 172411. https://doi.org/10.1063/1.4948381
  28. Sadovnikov A. V., Odintsov S. A., Beginin E. N., Sheshukova S. E., Sharaevskii Y. P., Nikitov S. A. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes. Phys. Rev. B, 2017, vol. 96, pp. 144428. https://doi.org/10.1103/PhysRevB.96.144428
  29. Wang Q., Pirro P., Verba R., Slavin A., Hillebrands B., Chumak A. V. Reconfigurable nanoscale spin-wave directional coupler. Science Advances, 2018, vol. 4, e1701517. https://doi.org/10.1126/sciadv.1701517
  30. Heussner F., Nabinger M., Fischer T., Brächer T., Serga A. A., Hillebrands B., Pirro P. Frequency-division multiplexing in magnonic logic networks based on causticlike spin-wave beams. Phys. Status Solidi RRL, 2018, vol. 12, 1800409. https://doi.org/10.1002/pssr.201800409
  31. Heussner F., Talmelli G., Geilen M., Heinz B., Brächer T., Meyer T., Ciubotaru F., Adelmann C., Yamamoto K., Serga A. A., Hillebrands B., Pirro P. Experimental realization of a passive gigahertz frequency-division demultiplexer for magnonic logic networks. Phys. Status Solidi RRL, 2020, vol. 14, 1900695. https://doi.org/10.1002/pssr.201900695
  32. Balinskiy M., Chiang H., Kozhevnikov A., Filimonov Y., Balandin A. A., Khitun A. A Spin-Wave Magnetometer with a Positive Feedback. J. Magn. Magn. Mater., 2020, vol. 514, 167046. https://doi.org/10.1016/j.jmmm.2020.167046
  33. Khivintsev Y. V., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Filimonov Y. A., Khitun A.G. Interference of spin waves in arrays of microwaveguides based on yttrium-iron garnet films. Technical Physics, 2019, vol. 89, no. 11, pp. 1622–1628. https://doi.org/10.1134/S106378421911015X
  34. Khivintsev Y. V., Kozhevnikov A. V., Dudko G. M., Sakharov V. K., Filimonov Y. A., Khitun A. G. Spin waves in YIG-based networks: Logic and signal processing. Physics of Metals and Metallography, 2019, vol. 120, no. 13, pp. 76–82. https://doi.org/10.1134/S0031918X1913012X
  35. O’Keeffe T. W., Patterson R. W. Magnetostatic surface wave propagation in finite samples. J. Appl. Phys., 1978, vol. 49, pp. 4886–4895. https://doi.org/10.1063/1.325522
  36. Bajpai S. N. Excitation of magnetostatic surface waves: Effect of finite sample width. J. Appl. Phys., 1985, vol. 58, no. 15, pp. 910–911. https://doi.org/10.1063/1.336164
  37. Grechushkin K. V., Stalmakhov A. V., Tyulukin V. A. Wave-guide distribution of magnetostatic waves. Pisma v Zhurnal Technicheskoi Fiziki, 1988, vol. 14, iss. 21, pp. 1973–1978 (in Russian).
  38. Sakharov V. K., Khivintsev Yu. V., Vysotsky S. L., Filimonov Yu. A. Peculiarities of magnetostatic waves propagation in microwaveguides with tapered width based on yttrium-iron garnet films. Geteromagnitnaya micro electonica: sbornik nauchnykh trudov. Pod. red. A. V. Lyashenko [A. V. Lyashenko, ed. Heteromagnetic Microelectronics: Collection of Scientific Proceedings]. Saratov, OAO “Institut kriticheskikh tekhnologii”, 2017, iss. 23, pp. 33–47 (in Russian).
  39. Gurevich A. G., Melkov G. A. Magnetization Oscillations and Waves. CRC Press, 1996. 464 p.
  40. Donahue M., Porter D. Object Oriented Micro Magnetic Framework (OOMMF). Interagency Report NISTIR 6376. National Institute of Standards and Technology. Gaithersburg, MD, 1999. 897 p. (www. math.nist.gov/oommf/).
  41. Ganguly A. K., Webb D. C. Radiation resistance of microstrip excited magnetostatic surface waves. IEEE Trans. MTT, 1975, vol. 23, no. 12, pp. 368–370. https://doi.org/10.1109/MWSYM.1975.1123398
  42. De Wames R. E., Wolfram T. Dipole-exchange spin waves in ferromagnetic films. J. Appl. Phys., 1970, vol. 41, pp. 987–993. https://doi.org/10.1063/1.1659049
  43. Gulyaev Y. V., Bugaev A. S., Zil’berman P. E., Ignat’- ev I. A., Konovalov A. G., Lugovskoi A. V., Mednikov A. M., Nam B. P., Nikolaev E. I. Giant oscillations in the transmission of quasi-surface spin waves through a thin yttrium-iron garnet (YIG) film. JETP Lett., 1979, vol. 30, pp. 565–568.
  44. Xing X.-J., Li S.-W., Huang X.-H., Wang Z.-G. Engineering spin-wave channels in submicrometer magnonic waveguides. AIP Advances, 2013, vol. 3, 032144. https://doi.org/10.1063/1.4799738
  45. Sasaki H., Mikoshiba N. Directional coupling of magnetostatic surface waves in a layered structure of YIG films. J. Appl. Phys., 1981, vol. 52, pp. 3546–3552. https://doi.org/10.1063/1.329134
  46. Kalinikos B. A., Slavin A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C: Solid State Phys., 1986, vol. 19, pp. 7013–7033. https://doi.org/10.1088/0022-3719/19/35/014
Received: 
09.12.2020
Accepted: 
05.04.2021
Published: 
31.08.2021