Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Postnov D. E., Koreshkov R. N., Semyachkina-Glushkovskaya O. V. Dynamic and Spectral Characteristics of Time Series Describing Pulse Wave Velocity. Izvestiya of Saratov University. Physics , 2011, vol. 11, iss. 2, pp. 30-35. DOI: 10.18500/1817-3020-2011-11-2-30-35

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 196)
Language: 
Russian
Heading: 
UDC: 
53.047

Dynamic and Spectral Characteristics of Time Series Describing Pulse Wave Velocity

Autors: 
Postnov Dmitry Engelevich, Saratov State University
Koreshkov Roman Nikolaevich, Saratov State University
Abstract: 

We analyze the dynamic and spectral characteristics of the signals that reflects the rapid changes in pulse wave velocity (PWV). We describe the characteristics of PWV signal in the high frequency HF range (from 0.1 to 0.5 Hz) and suggest a simple model that illustrates our hypotheses.

Reference: 
  1. Continuous pulse wave velocity recording for indirectly monitoring blood pressure in man // Med. Electron. Biol. Engng. 1965. Vol. 3. Р. 321–324.
  2. Trawinski Z. New method for measure regional pulse wave velocity by means of RF ultrasonic signals // Molecular and Quantum Acoustics. 2008. Vol. 29. P. 163–169.
  3. Naidu M., Reddy B., Yashmaina S., Patnaik A., Rani P. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique A pilot study // BioMed. Engng. OnLine. 2005. Vol. 4, № 49.
  4. Ibrahim E., Johnson K., Miller A., Shaffer J., White R. Measuring aortic pulse wave velocity using high-fi eld cardiovascular magnetic resonance: comparison of techniques // J. of Cardiovascular Magnetic Resonance. 2010. Vol. 12, № 26.
  5. McLaughlin J., McNeill M., Braun B., McCormack P. Piezoelectric sensor determination of arterial pulse wave velocity // Physiological Measurement. 2003. Vol. 24. P. 693.
  6. Sutton-Tyrrell K., Mackey R., lubkov R., Vaitkevicius P., Spurgeon H., Lakatta E. Measurement variation of aortic pulse wave velocity in the elderly // AJH. 2001. Vol. 14. P. 463–468.
  7. Yeragani V., Kumar R., Bar K., Chokka P., Tancer M. Exaggerated differences in pulse wave velocity between left and right sides among patients with anxiety disorders and cardiovascular disease // Psychosomatic Medicine. 2007. Vol. 69. P. 717–722.
  8. Lantelme P., Mestre C., Lievre M., Gressard A., Milon H. Heart rate an important confounder of pulse wave velocity assessment // Hypertension. 2002. Vol. 39. P. 1083–1087.
  9. Millasseau S., Stewart A., Patel S., Redwood S., Chowienczyk P. Evaluation of carotid–femoral pulse wave velocity influence of timing algorithm and heart rate // Hypertension. 2005. Vol. 45. P. 222– 226.
  10. Perkins G. M., Owen A., Swaine I., Wiles J. Relationships between pulse wave velocity and heartrate Variability in healthy men with arrange of moderate-to-vigorous Physical activity levels // Eur. J Appl. Physiol. 2006. Vol. 98. P. 516–523.
  11. Bodlaj G., Berg J., Biesenbach G. Diurnal variation of pulse wave velocity assessed noninvasively by applanation tonometry in young healthy men // Yonsei Medical J. 2007. Vol. 48, № 4. P. 665– 670.
  12. Iorio B., Cucciniello E., Alinei P., Torraca S. Reproducibility of regional pulse-wave velocity in uremic subjects // Hemodialysis Intern. 2010. Vol. 14, iss. 4. P. 441–446.
  13. Фундаментальная и клиническая физиология / под ред. А. А. Каменского, А. Г. Камкина. М.: Изд. центр «Академия», 2004. 1072 c.
  14. Морман Д., Хеллер Л. Физиология сердечно-сосудистой системы. СПб. : Изд-во «Питер», 2000. 256 с.
  15. Семячкина-Глушковская О. В., Анищенко Т. Г., Бердникова В. А., Найденова О. С. Половые особенности холинергической регуляции сердечно-сосудистой системы у здоровых и гипертензивных крыс // Бюл. экспериментальной биологии и медицины. 2008. Т. 146, № 7. C. 33–37.
  16. Семячкина-Глушковская О. В., Анищенко Т. Г., Бердникова В. А. Роль социального стресса и оксида азота в развитии гипертонии // Изв. Cамарского науч. центра РАН. 2008. Т. 2, № 2. С. 154–158.
  17. BIOPAC System, Inc. Sophisticated Solutions for Data Acquisition and Analysis. URL: www.biopac.com (дата обращения: 14.01.2012).
  18. Крупаткин А. И., Сидоров В. В. Лазерная допплеровская флоуметрия микроциркуляции крови. М.: Медицина, 2005. 256 с.
  19. Elam M., McKenzie D., Macefi eld V. Mechanism of sympathoexcitation single-unit analysis of muscle vasoconstrictor neurons in awake OSAS subjects // J. Appl. Physol. 2002. Vol. 93. P. 297–303.
  20. Macefi eld V., Elam M. Comparison of the fi ring patterns of human postganglionic sympathetic neurones and spinal alfa motoneurones during brief bursts // Exp. Physiol. 2003. Vol. 89, № 1. P. 82–88.
  21. Lambert E., Straznicky N., Schlaich M., Murray E., Dawood T., Hotchkin E., Lambert G. Differing pattern of sympathoexcitation in normal-weight and obesity-related // Hypertension. 2007. Vol. 50. P. 862–868.
  22. FitzHugh R. A. Impulses and physiological states in theoretical models of nerve membrane // Biophys. J. 1961. Vol. 1. P. 445–446.
  23. Хованова Н. А., Хованов И. А. Методы анализа временных рядов : учеб. пособие. Саратов : Изд-во ГосУНЦ Колледж, 2001. 120 с.