Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Skripal A. V., Fomin A. V., Bakhmetyev A. S., Brilenok N. B., Sagaidachnyi A. A., Dobdin S. Y., Tikhonova A. S. Diagnostics of arterial vessels of athletes using Doppler ultrasound measurement. Izvestiya of Sarat. Univ. Physics. , 2022, vol. 22, iss. 2, pp. 141-148. DOI: 10.18500/1817-3020-2022-22-2-141-148

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.06.2022
Full text:
(downloads: 78)
Language: 
Russian
Article type: 
Article
UDC: 
53.047.577.38

Diagnostics of arterial vessels of athletes using Doppler ultrasound measurement

Autors: 
Skripal Anatoly Vladimirovich, Saratov State University
Fomin Andrey Vladimirovich, Saratov State University
Bakhmetyev Artem Sergeevich, Saratov State Medical University named after V. I. Razumovsky
Brilenok Nailya Bulatovna, Saratov State University
Sagaidachnyi Andrey Aleksandrovich, Saratov State University
Dobdin Sergey Yur'evich, Saratov State University
Tikhonova Antonina Sergeevna, Saratov State University
Abstract: 

Objectives: The volumetric blood flow of arterial vessels of athletes with a high sports category was studied using the Doppler ultrasound measurement. Methods: Two groups of volunteers were examined: group I consisted of unsportsmanlike volunteers who do not suffer from cardiovascular pathology, and group II consisted of athletes who have the rank of candidate master of sports. The diagnosis was carried out based on the results of measuring the arterial blood flow rate in conditions of reactive hyperemia of the brachial artery and in relation to the reverse volumetric blood flow to the volumetric systolic blood flow. Results: A comparative analysis of changes in the ultrasound Dopplerograms of athletes and untrained volunteers indicates a significant difference in both the peak velocity of the arterial blood flow in the conditions of reactive hyperemia of the brachial artery. Another method of registering the altered state of arterial vessels in athletes may be the ratio of the volume velocity of the reverse blood flow to the volume velocity of the systolic blood flow. Conclusion: The method of ultrasonic Dopplerography for the diagnosis of arterial vascular of athletes with a high sports category has been proposed. The measurements have shown that the ratio of the volumetric velocity of the reverse blood flow to the volumetric velocity of the systolic blood flow is significantly higher in athletes.

Acknowledgments: 
The reported study was funded by the Grant Council of the President of the Russian Federation for the state support of young Russian scientists – candidates of sciences (project No. 140.2021.4).
Reference: 
  1. Green D. J., Spence A., Rowley N., Thijssen D. H., Naylor L. H. Vascular adaptation in athletes : Is there an ‘athlete’s artery’? Exp. Physiol., 2012, vol. 97, iss. 3, pp. 295–304. https://doi.org/10.1113/expphysiol.2011.058826
  2. McClean G., Riding N. R., Ardern C. L., Farooq A., Pieles G. E., Watt V., Adamuz C., George K. P., Oxborough D., Wilson M. G. Electrical and structural adaptations of the pediatric athlete’s heart : A systematic review with meta-analysis. Br. J. Sports Med., 2017, vol. 52, iss. 4, pp. 230. https://doi.org/10.1136/bjsports2016-097052
  3. Duarte-Mendes P., Paulo R., Coelho P., Rodrigues F., Marques V., Mateus S. Variability of Lower Limb Artery Systolic–Diastolic Velocities in Futsal Athletes and NonAthletes : Evaluation by Arterial Doppler Ultrasound. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 2, pp. 570. https://doi.org/10.3390/ijerph17020570
  4. Kudrya O. N., Kiriyanova M. A., Kapilevich L. V. Characteristics of peripheral hemodynamics athletes with loads of adaptation to a different direction. Bulletin of Siberian Medicine, 2012, vol. 11, no. 3, pp. 48–52 (in Russian). https://doi.org/10.20538/1682-0363-2012-3-48-52
  5. Calbet J. A. L., Jensen-Urstad M., Hall G. Van, Holmberg H.-C., Rosdahl H., Saltin B. Maximal muscular vascular conductances during whole body upright exercise in humans. J. Physiol., 2004, vol. 558, iss. 1, pp. 319–331. https://doi.org/10.1113/jphysiol.2003.059287
  6. Heffernan K. S. How healthy were the arteries of Phidippides? Clin. Cardiol., 2012, vol. 35, iss. 2, pp. 65–68. https://doi.org/10.1002/clс.21009
  7. Cioni G., Berni A., Gensini G. F., Abbate R., Boddi M. Impaired Femoral Vascular Compliance and Endothelial Dysfunction in 30 Healthy Male Soccer Players : Competitive Sports and Local Detrimental Effects. Sports Health : A Multidisciplinary Approach, 2015, vol. 7, no. 4, pp. 335–340. https://doi.org/10.1177/1941738115577931
  8. Kologrivova V. V., Zakharova A. N., Pakhomova E. V., Vasilyev V. N., Kapilevich L. V. The Characteristic of Endothelium-dependent Vasodilatation in Athletes and Untrained Volunteers. Bulletin of Siberian Medicine, 2018, vol. 17, no. 4, pp. 42–46. https://doi.org/10.20538/1682-0363-2018-4-42-46
  9. Usanov D. A., Skripal An. V., Brilenok N. B., Dobdin S. Yu., Averianov A. P., Bakhmetev A. S., Baatyrov R. T. Diagnostics of Functional State of Endothelium in Athletes by the Pulse Wave. Proceedings of the 12th International Symposium on Computer Science in Sport (IACSS 2019). Advances in Intelligent Systems and Computing, 2020, vol. 1028, pp. 176–184. https://doi.org/10.1007/978-3-030-35048-2_21
  10. Melkumyants A. M., Balakhonova T. V., Pogorelova O. A., Tripoten M. I. Effect of short-term physical training on hemodynamic aspects of endothelial function in human brachial artery. Russian Cardiology Bulletin, 2019, vol. 14, no. 3, pp. 44–48 (in Russian). https://doi.org/10.36396/MS.2019.14.03.007
  11. Pohl U., Holtz J., Busse R., Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension, 1986, vol. 8, iss. 1, pp. 37– 44. https://doi.org/10.1161/01.hyp.8.1.37
  12. Kalakutskiy L. I., Fedotov A. A. Diagnostics of endothelial dysfunction by the method of contour analysis of pulse wave. Izvestiya SFEDU. Engineering Sciences, 2009, vol. 98, no. 9, pp. 93–98 (in Russian).
  13. Green D. J., Hopman M. T. E., Padilla J., Laughlin J. M., Thijssen D. H. J. Vascular Adaptation to Exercise in Humans : Role of Hemodynamic Stimuli. Physiol. Rev., 2017, vol. 97, no. 2, pp. 495–528. https://doi.org/10.1152/physrev.00014.2016
  14. Corretti M. C., Anderson T. J., Benjamin E. J., Celermajer D., Charbonneau F., Creager M. A., Deanfield J., Drexler H., Gerhard-Herman M., Herrington D., Vallance P., Vita J., Vogel R. Guidelines for the ultrasound assessment of endothelial dependent flow-mediated vasodilation of the brachial artery : A report of the International Brachial Artery Reactivity Task Force. Journal of the American College of Cardiology, 2002, vol. 39, iss. 2, pp. 257–265. https://doi.org/10.1016/S0735-1097(01)01746-6
  15. Ninet J., Fronek A. Cutaneous postocclusive reactive hyperemia monitored by laser Doppler flux metering and skin temperature. Microvascular Research, 1985, vol. 30, no. 1, pp. 125–132. https://doi.org/10.1016/0026-2862(85)90044-5
  16. Sagaidachnyi А. А., Skripal An. V., Fomin A. V., Usanov D. A. Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography – measured blood flow in fingertips. Physiol. Meas., 2014, vol. 35, no. 2, pp. 153– 166. https://doi.org/10.1088/0967-3334/35/2/153
  17. Selvaraj N., Jaryal A. K., Santhosh J., Anand S., Deepak K. K. Monitoring of reactive hyperemia using photoplethysmographic pulse amplitude and transit time. J. Clin. Monit. Comput., 2009, vol. 23, no. 5, pp. 315– 322. https://doi.org/10.1007/s10877-009-9199-3
  18. Usanov D. A. Skripal An. V., Protopopov А. А., Sagaidachnyi A. A., Rytik A. P., Miroshnichenko E. V. Estimation of Blood Vessels Functional State by Means of Analysis of Temperature Reaction on Occlusive Test. Saratov Journal of Medical Scientific Research, 2009, vol. 5, no. 4, pp. 554–558.
  19. Zahedi E., Jaafar R., Ali M. M., Mohamed A. L., Maskon O. Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation. Physiol. Meas., 2008, vol. 29, no. 5, pp. 625. https://doi.org/10.1088/0967-3334/29/5/008
  20. Volkov M. V., Kostrova D. A., Margaryants N. B., Gurov I. P., Erofeev N. P., Dremin V. V., Zharkikh E. V., Zherebtsov E. A., Kozlov I. O., Dunaev A. V. Evaluation of blood microcirculation parameters by combined use of laser Doppler flowmetry and videocapillaroscopy methods. Proc. SPIE. Saratov Fall Meeting 2016 : Optical Technologies in Biophysics and Medicine XVIII, 2017, vol. 10336, article no. 1033607. https://doi.org/10.1117/12.2267955
  21. Green D., Cheetham C., Reed C., Dembo L., O’Driscoll G. Assessment of brachial artery blood flow across the cardiac cycle : Retrograde flows during cycle ergometry. J. Appl. Physiol., 2002, vol. 93, pp. 361–368. https://doi.org/10.1152/japplphysiol.00051.2002
  22. Celermajer D. S., Sorensen K. E., Gooch V. M., Spiegelhalter D. J., Miller O. I., Sullivan I. D., Lloyd J. K., Deanfield J. E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. The Lancet, 1992, vol. 340, no. 8828, pp. 1111–1115.
Received: 
23.02.2022
Accepted: 
24.03.2022
Published: 
30.06.2022