Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ulyanov A. S. Dependence of Fractal Dimension of Biospeckles on Conditions of Illumination: Computer Simulation. Izvestiya of Sarat. Univ. Physics. , 2011, vol. 11, iss. 2, pp. 36-40. DOI: 10.18500/1817-3020-2011-11-2-36-40

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 39)
Language: 
Russian
Heading: 
UDC: 
535.361

Dependence of Fractal Dimension of Biospeckles on Conditions of Illumination: Computer Simulation

Autors: 
Ulyanov Aleksandr Sergeevich, Saratov State University
Abstract: 

There were presented results of computer simulation of processes of scattering of laser light on biological objects with fractal structure. Dependence of fractal dimension of speckle pattern formed under illumination of model of biological object on fractal properties of object of interest and on correlation between diameter of laser beam and dimensions of biofractal was investigated.

Reference: 
  1. Mandelbrot B. The Fractal Geometry of Nature. San Francisco : W. H. Freeman and Co., 1982.
  2. Тучин В. В. Лазеры и волоконная оптика в биомедицинских исследованиях. Саратов : Изд-во Сарат. ун-та, 1998
  3. Dainty J. C. Topics in Applied Physics. Berlin : Springer – Verlag, 1975.
  4. Ishii K., Asakura T. Correlation Properties of Light Backscattered Multiply from Fractal Aggregates of Particles Under Brownian Motion // J. Biomed. Opt. 1999. Vol. 4(2). P. 230.
  5. Dogariu A., Uozumi J., Asakura T. Ballistic propagation of light through fractal gels // Waves in Random Media. 1994. Vol. 4. P. 1.
  6. Wada N., Uozumi J., Asakura T. Effects of random noise on bispectra of fractal objects // Pure Appl. Opt. 1995. Vol. 4. P. 857.
  7. Funamizu H., Uozumi J. Generation of fractal speckles by means of a spatial light modulator // Optics Express. 2007. Vol. 15(12). P. 7415.
  8. Hanson S. G., Jakobsen M. L., Hansen R. S., Yura T. H. Compound speckles and their statistical and dynamical properties // Proc. SPIE. 2008. Vol. 7008. P. 70080M.
  9. Okamoto T., Fujita S. Statistical properties of threedimensional speckle distributions produced by crossed scattered waves // JOSA A. 2008. Vol. 25(12). P. 3030.
  10. Khlebtsov N. G. An approximate method for calculating scattering and absorption of light by fractal aggregates // Optics and Spectroscopy. 2000. Vol. 88(4). P. 594.
  11. Schmitt J. M., Kumar G. Optical scattering properties of soft tissue : a discrete particle model // Applied Optics. 1998. Vol. 37(13). P. 2788.
  12. Wang R. K. Modelling optical properties of soft tissue by fractal distribution of scatters // J. Mod. Opt. 2000. Vol. 47. P. 103.
  13. Иванов А. В., Короновский А. А., Минюхин И. М., Яшков И. А. Определение фрактальной размерности овражно-балочной сети города Саратова // Изв. вузов. Прикладная нелинейная динамика. 2006. Т. 14, № 2. С. 64.
  14. Ulyanov A. S. Analysis of Fractal Dimensions in the express diagnostics of bacterial colonies // Optics and Spectroscopy. 2009. Vol. 107(6). P. 866.
  15. Ulyanov A. S. Identifi cation of tissues with pathological changes using laser speckles // Quantum Electronics. 2008. Vol. 38(6). P. 557.
  16. Uozumi J., Ibrahim M., Asakura T. Fractal Speckles// Opt. Commun. 1998. Vol. 156. P. 350.