Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ishbulatov Y. M., Simonyan M. A., Karavaev A. S., Kiselev A. R., Gridnev V. I. Decrease of low-frequency spectral power in a heart rate variability signal in a mathematical model of the cardiovascular system of arterial hypertension patients. Izvestiya of Saratov University. Physics , 2021, vol. 21, iss. 4, pp. 363-371. DOI: 10.18500/1817-3020-2021-21-4-363-371, EDN: WUZXFR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2021
Full text:
(downloads: 251)
Language: 
Russian
Article type: 
Article
UDC: 
537.86.029
EDN: 
WUZXFR

Decrease of low-frequency spectral power in a heart rate variability signal in a mathematical model of the cardiovascular system of arterial hypertension patients

Autors: 
Ishbulatov Yurii Mikhailovich, Saratov State University
Simonyan Margarita A., Saratov State Medical University named after V. I. Razumovsky
Karavaev Anatoly Sergeevich, Saratov State University
Kiselev Anton Robertovich, Saratov State University
Gridnev Vladimir Ivanovich, Saratov State Medical University named after V. I. Razumovsky
Abstract: 

Background and Objectives: Index equal to the spectral power of the low-frequency oscillations from the time series of the time intervals between the hearts contractions are often used when investigating the cardiovascular system. Experimental studies have shown that this spectral index was a preclinical marker of cardiovascular diseases, including arterial hypertension and diabetes. However, physiological understanding of this index, in particular, its relation to the tone of autonomic control is still largely not understood. Materials and Methods: This problem was studied using mathematical models of the cardiovascular system, which simulated a healthy subject and an arterial hypertension patient. Conclusion: The decrease in the power of low-frequency oscillations in the time-series of the time intervals between the heart contractions in arterial hypertension patients was due to decreased dynamic range of the arterial baroreceptors.

Acknowledgments: 
This study was funded by the Russian Science Foundation (project No. 21-71-30011).
Reference: 
  1. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 1981, vol. 213, iss. 4504, pp. 220–222. https://doi.org/10.1126/science.6166045
  2. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation, 1996, vol. 93, iss. 5, pp. 1043–1065.
  3. Fagard R. H., Stolarz K., Kuznetsova T., Seidlerova J., Tikhonoff V., Grodzicki T., Nikitin Y., Filipovsky J., Peleska J., Casiglia E., Thijs L., Staessen J. A., Kawecka-Jaszcz K. Sympathetic activity, assessed by power spectral analysis of heart rate variability, in white-coat, masked and sustained hypertension versus true normotension. J. Hypertens., 2015, vol. 25, iss. 11, pp. 2280–2285. https://doi.org/10.1097/HJH.0b013e3282efc1fe
  4. Ziegler D., Laude D., Akila F., Elghozi J. L. Time- and frequency-domain estimation of early diabetic cardiovascular autonomic neuropathy. Clin. Auton Res., 2001, vol. 11, iss. 6, pp. 369–376. PMID: 11794718. https://doi.org/10.1007/BF02292769
  5. Ershler W. B., Keller E. T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu. Rev. Med., 2000, vol. 51, pp. 245–270. https://doi.org/10.1146/annurev.med.51.1.245
  6. Facioli T. P., Gastaldi A. C., Dutra S. G. V., Felix A. C. S., Philbois S. V., Sánchez-Delgado J. C., Souza H. C. D. The blood pressure variability and baroreflex sensitivity in healthy participants are not determined by sex or cardiorespiratory fitness. Blood Press. Monit., 2018, vol. 23, iss. 5, pp. 260–270. https://doi.org/10.1097/MBP.0000000000000338
  7. Aravind N., Alexandros P., Hulya E.-F., Pradeep N. Heart rate variability with photoplethysmography in 8 million individuals: A cross-sectional study. The Lancet., 2020, vol. 2, iss. 12, article number e650. https://doi.org/https://doi.org/10.1016/S2589-7500(20)30246-6
  8. Moak J. P., Goldstein D. S., Eldadah B. A., Saleem A., Holmes C., Pechnik S., Sharabi Y. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm., 2007, vol. 4, pp. 1523–1529.
  9. Goldstein D. S., Bentho O., Park M. Y., Sharabi Y. Lowfrequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol., 2011, vol. 96, iss. 12, pp. 1255–1261. https://doi.org/10.1113/expphysiol.2010.056259
  10. Karavaev A. S., Ishbulatov Y. M., Ponomarenko V. I., Prokhorov M. D., Gridnev V. I., Bezruchko B. P., Kiselev A. R. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure. J. Am. Soc. Hypertens., 2016, vol. 10, iss. 3, pp. 235–243. https://doi.org/10.1016/j.jash.2015.12.014
  11. Ishbulatov Y. M., Karavaev A. S., Kiselev A. R., Simonyan M. A., Prokhorov M. D., Ponomarenko V. I., Mironov S. A., Gridnec V. I., Bezruchko B. P., Shvartz V. A. Mathematical modeling of the cardiovascular autonomic control in healthy subjects during a passive head-up tilt test. Sci. Rep., 2020, vol. 10, article number 16525. https://doi.org/10.1038/s41598-020-71532-7
  12. Kotani K., Struzik Z. R., Takamasu K., Stanley H. E., Yamamoto Y. Model for complex heart rate dynamics in health and diseases. Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys., 2005, vol. 72, article number 041904. https://doi.org/10.1103/PhysRevE.72.041904
Received: 
06.09.2021
Accepted: 
15.10.2021
Published: 
30.11.2021