For citation:
Ishbulatov Y. M., Simonyan M. A., Karavaev A. S., Kiselev A. R., Gridnev V. I. Decrease of low-frequency spectral power in a heart rate variability signal in a mathematical model of the cardiovascular system of arterial hypertension patients. Izvestiya of Saratov University. Physics , 2021, vol. 21, iss. 4, pp. 363-371. DOI: 10.18500/1817-3020-2021-21-4-363-371, EDN: WUZXFR
Decrease of low-frequency spectral power in a heart rate variability signal in a mathematical model of the cardiovascular system of arterial hypertension patients
Background and Objectives: Index equal to the spectral power of the low-frequency oscillations from the time series of the time intervals between the hearts contractions are often used when investigating the cardiovascular system. Experimental studies have shown that this spectral index was a preclinical marker of cardiovascular diseases, including arterial hypertension and diabetes. However, physiological understanding of this index, in particular, its relation to the tone of autonomic control is still largely not understood. Materials and Methods: This problem was studied using mathematical models of the cardiovascular system, which simulated a healthy subject and an arterial hypertension patient. Conclusion: The decrease in the power of low-frequency oscillations in the time-series of the time intervals between the heart contractions in arterial hypertension patients was due to decreased dynamic range of the arterial baroreceptors.
- Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 1981, vol. 213, iss. 4504, pp. 220–222. https://doi.org/10.1126/science.6166045
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation, 1996, vol. 93, iss. 5, pp. 1043–1065.
- Fagard R. H., Stolarz K., Kuznetsova T., Seidlerova J., Tikhonoff V., Grodzicki T., Nikitin Y., Filipovsky J., Peleska J., Casiglia E., Thijs L., Staessen J. A., Kawecka-Jaszcz K. Sympathetic activity, assessed by power spectral analysis of heart rate variability, in white-coat, masked and sustained hypertension versus true normotension. J. Hypertens., 2015, vol. 25, iss. 11, pp. 2280–2285. https://doi.org/10.1097/HJH.0b013e3282efc1fe
- Ziegler D., Laude D., Akila F., Elghozi J. L. Time- and frequency-domain estimation of early diabetic cardiovascular autonomic neuropathy. Clin. Auton Res., 2001, vol. 11, iss. 6, pp. 369–376. PMID: 11794718. https://doi.org/10.1007/BF02292769
- Ershler W. B., Keller E. T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu. Rev. Med., 2000, vol. 51, pp. 245–270. https://doi.org/10.1146/annurev.med.51.1.245
- Facioli T. P., Gastaldi A. C., Dutra S. G. V., Felix A. C. S., Philbois S. V., Sánchez-Delgado J. C., Souza H. C. D. The blood pressure variability and baroreflex sensitivity in healthy participants are not determined by sex or cardiorespiratory fitness. Blood Press. Monit., 2018, vol. 23, iss. 5, pp. 260–270. https://doi.org/10.1097/MBP.0000000000000338
- Aravind N., Alexandros P., Hulya E.-F., Pradeep N. Heart rate variability with photoplethysmography in 8 million individuals: A cross-sectional study. The Lancet., 2020, vol. 2, iss. 12, article number e650. https://doi.org/https://doi.org/10.1016/S2589-7500(20)30246-6
- Moak J. P., Goldstein D. S., Eldadah B. A., Saleem A., Holmes C., Pechnik S., Sharabi Y. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm., 2007, vol. 4, pp. 1523–1529.
- Goldstein D. S., Bentho O., Park M. Y., Sharabi Y. Lowfrequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol., 2011, vol. 96, iss. 12, pp. 1255–1261. https://doi.org/10.1113/expphysiol.2010.056259
- Karavaev A. S., Ishbulatov Y. M., Ponomarenko V. I., Prokhorov M. D., Gridnev V. I., Bezruchko B. P., Kiselev A. R. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure. J. Am. Soc. Hypertens., 2016, vol. 10, iss. 3, pp. 235–243. https://doi.org/10.1016/j.jash.2015.12.014
- Ishbulatov Y. M., Karavaev A. S., Kiselev A. R., Simonyan M. A., Prokhorov M. D., Ponomarenko V. I., Mironov S. A., Gridnec V. I., Bezruchko B. P., Shvartz V. A. Mathematical modeling of the cardiovascular autonomic control in healthy subjects during a passive head-up tilt test. Sci. Rep., 2020, vol. 10, article number 16525. https://doi.org/10.1038/s41598-020-71532-7
- Kotani K., Struzik Z. R., Takamasu K., Stanley H. E., Yamamoto Y. Model for complex heart rate dynamics in health and diseases. Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys., 2005, vol. 72, article number 041904. https://doi.org/10.1103/PhysRevE.72.041904
- 1193 reads