Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ерохин П. С., Utkin D. V., Bugorkova T. V., Кузнецов О. С., Aspen N. A. Current Abilities Investigation Ultrastucture Cells of Microorganisms Using Method Scanning Probe Microscopy. Izvestiya of Saratov University. Physics , 2012, vol. 12, iss. 1, pp. 33-37. DOI: 10.18500/1817-3020-2012-12-1-33-37

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 184)
Language: 
Russian
Heading: 
UDC: 
579.23:53.086:615.281

Current Abilities Investigation Ultrastucture Cells of Microorganisms Using Method Scanning Probe Microscopy

Autors: 
Ерохин Павел Сергеевич, Russian Research Anti-Plague Institute «Microbe»
Utkin Denis Valer'evich, Russian Research Anti-Plague Institute «Microbe»
Bugorkova Tatiana Vasil'evna, Russian Research Anti-Plague Institute «Microbe»
Кузнецов Олег Святославович, Russian Research Anti-Plague Institute «Microbe»
Aspen Natalia Aleksandrovna, Russian Research Anti-Plague Institute «Microbe»
Abstract: 

This review presents data about current application of scanning probe microscopy in microbiology research. Methods of scanning probe microscopy belong used to study the ultrastructural and morphological features of microorganisms, their mechanical properties et al. The review also present data about the development methods of scanning probe microscopy to study microorganisms and their communities.

Reference: 
  1. El-Naggar M. Y., Gorby Y. A., Xia W., Nealson K. H. The molecular density of states in bacterial nanowires // Biophys. J. : Biophys. Let. DOI : https://doi.org/10.1529/biophysj.108.134411
  2. Gorby Y. A., Yanina S., Mclean J. S., Rosso K. M., Moyles D., Dohnalkova A., Beveridge T. J., Chang I. S., Kim B. H., Kim K. S., Culley D. E., Reed S. B., Romine M. F., Saffarini D. A., Hill E. A., Shi L., Elias D. A., Kennedy D. W., Pinchuk G., Watanabe K., Ishii S., Logan B., Nealson K. H., Fredrickson J. K. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms // PNAS. 2006. Vol. 103, № 30. P. 11358–11363.
  3. Johnson L., Gaupa A. K., Ghafoor A., Akin Demir, Bashir R. Characterization of vaccinia virus particles using microscale silicon cantilever resonators and atomic force microscopy // Sens. and Actuat. B. 2006. Vol. 115. P. 189–197.
  4. Кайшева А. Л, Иванов Ю. Д., Згода В. Г., Францу- зов П. А., Плешакова Т. О., Крохин Н. В., Зиборов В. С., Арчаков А. И. Визуализация и идентификация вирусных частиц гепатита с при помощи атомно-силовой микроскопии, сопряженной с МС/МС анализом // Биомедицинская химия. 2010. Т. 56, вып. 1. С. 26–39.
  5. Chao Y., Zhang T. Optimization of fi xation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy // Appl. Microbiol. Biotechnol. 2011. Vol. 92. P. 381–392.
  6. Fernandes J. C., Eaton P., Gomes A. M., Pintado M. E., Malcata F. X. Study of the antibacterial effects of chitosans on Bacillus cereus (and it’s spores) by atomic force microscopy imaging and nanoidentation // Ultramicr. 2009. Vol. 109. P. 854–860.
  7. Stukalov O., Korenevsky A., Beveridge T. J., Dutcher J. R. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules // Appl. and Environ. Microbiol. 2008. Vol. 74, № 17. P. 5457–5465.
  8. Chada V. G. R., Sanstad E. A., Wang R., Driks A. Morphogenesis of Bacillus spore surfaces // J. of Bacteriol. 2003. Vol. 185, № 21. P. 6255–6261.
  9. Zaman M. S., Goyal A., Dubey G. P., Gupta P. K., Chandra H., Das T. K., Ganguli M., Singh Y. Imaging and analysis of Bacillus anthracis spore germination // Microsc. Res. Tech. 2005. Vol. 66, № 6. P. 307–311.
  10. Kuznetsova T. G., Starodubtseva M. N., Yegorenkov N. I., Chizhik S. A., Zhdanov R. I. Atomic force microscopy probing of cell elasticity // Micron. 2007. Vol. 38. P. 824–833.
  11. Emerson R. J., Camesano T. A. Nanoscale investigation of pathogenic microbial adhesion to a biomaterial // Appl. and Environ. Microbiol. 2004. Vol. 70, № 10. P. 6012–6022.
  12. Hwang D. S., Gim Y., Cha H. J. Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli // Biotechnol. Prog. 2005. Vol. 21. P. 965–970.
  13. Volle C. B., Ferguson M. A., Aidala K. E., Spain E. M., Nunez M. E. Spring constants and adhesive properties of native bacterial biofi lm cells measured by atomic force microscopy // Coll. Surf. B Biointerfaces. 2008. Vol. 67, № 1. P. 32–40.
  14. XiaoXiao H., Rong J., Liu Y., KeMin W., Wei L., WeiHong T., HuiMin L. Study on the specifi c interaction between angiogenin and aptamer by atomic force microscopy (AFM) // Chi. Sci. Bull. 2008. Vol. 53, № 2. P. 198–203.
  15. Sungkanak U., Sappat A., Wisitsoraat A., Promptmas C., Tuantranont A. Ultrasensitive detection of Vibrio cholerae O1 using microcantilever-based biosensor with dynamic force microscopy // Biosens. Bioelectron. 2010. Vol. 26, № 2. P. 784–789.
  16. Ahimou F., Semmens M. J., Novak P. J., Haugstad G. Bio- fi lm cohesiveness measurement using a novel atomic force microscopy methodology // Appl. and Environ. Microbiol. 2007. Vol. 73, № 9. P. 2897–2904.
  17. Raspanti M., Congiu T., Guizzardi S. Tapping mode atomic force microscopy in fl uid of hydrated extracellular matrix // Matrix biol. 2001. Vol. 20, № 8. P. 601–604.
  18. Jonas K., Tomenius H., Kader A., Normak S., Romling U., Belova L.M., Melefors O. Roles of curli, cellulose and BapA in Salmonella biofi lm morphology studied by atomic force microscopy // BMC Microbiol. 2001. Vol. 70, № 7. DOI: https://doi.org/10.1186/1471-2180-7-70
  19. Doktycz M. J., Sullivan C. J., Hoyt P. R., Pelletier D. A., Wu S., Allison D. P. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces // Ultramicr. 2003. Vol. 97. P. 209–216.
  20. Laurino P., Kikkeri R., Azzouz N., Seeberger P. H. Detection of bacteria using gluco-dendronized polylysine prepared by continuous fl ow photofunctionalization // Nano Lett. 2011. Vol. 11. P. 73–78.
  21. Beech I. B., Smith J. R., Steele A. A., Penegar I., Campbell S. A. The use of atomic force microscopy for studying interaction of bacterial biofi lms with surface // Coll. and surf. B: Bioint. 2002. Vol. 23. P. 231–247.
  22. Inoue T., Shingaki R., Sogawa N., Sogawa C. A., Asaumi J.-I., Kokeguchi S., Fukui K. Biofi lm formation by a FimbriaeDefi cient mutant of Actinobacillus actinomycetemcomitans // Microbiol. Immunol. 2003. Vol. 47, № 11. P. 877–881.
  23. Pham D. K., Ivanova E. P., Wright J. P., Nicolau D. V. AFM analysis of the extracellular polymeric substances (EPS) released during bacterial attachment on polymeric surfaces // Proc. SPIE. 2003. Vol. 4962. P. 151–159.
  24. Vu B., Chen M., Crawford R. J., Ivanova E. P. Bacterial extracellular polysaccharides involved in biofi lm formation // Molecules. 2009. Vol. 14. P. 2535–2554.
  25. Hammer M. U., Brauser A., Olak C., Brezesinski G., Goldmann T., Gutsmann T., Andra J. Lipopolysaccharide interaction is decisive for the activity on the antimicrobial peptide NK-2 against Escherichia coli and Proteus murabilis // Biochem. J. 2010. Vol. 427. P. 477–488.
  26. Braga P. C., Ricci D. Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime // Antimicrob. agents and chemother. 1998. Vol. 42, № 1. P. 18–22.
  27. Дерябин Д. Г., Васильченко А. С., Алешина Е. С., Тлягу- лова А. С., Никиян А. Н. Исследование взаимодействия углеродных наноматериалов с клетками Escherichia coli методом атомно-силовой микроскопии // Россий- ские нанотехнологии. 2010. Т. 5, № 11–12. С. 136–141.
  28. Fang J., Lyon D. Y., Wiesner M. R., Dong J., Alvarez P. J. J. Effect of a fullerene water suspension on bacterial phospholipids and membrane behavior // Environ. Sci. Technol. 2007. Vol. 41. P. 2636–2642.
  29. Pelling A. E., Li Y., Wenyuan S., Gimzewski J. K. Nanoscale visualization and characterization of Mycococcus Xanthus cells with atomic force microscopy // PNAS. 2005. Vol. 102, № 18. P. 6484–6489.
  30. Boyd J. M., Dacanay A., Knickle L. C., Touhami A., Brown L. L., Jericho M., Johnson S. C., Reith M. Contribution of Type IV Pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic Salmon (Salmo salar L.) // Infect. and Immun. 2008. Vol. 76, № 4. P. 1445–1455.