Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Saveleva M. S., Demina P. A. Composite hydrogel gellan gum-based materials with CaCO3 vaterite particles. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 3, pp. 245-253. DOI: 10.18500/1817-3020-2023-23-3-245-253, EDN: NGCWHC

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
29.09.2023
Full text:
(downloads: 225)
Language: 
English
Article type: 
Article
UDC: 
54
EDN: 
NGCWHC

Composite hydrogel gellan gum-based materials with CaCO3 vaterite particles

Autors: 
Saveleva Mariia Sergeevna, Saratov State University
Demina Polina A., Saratov State University
Abstract: 

Background and Objectives: Hydrogels are cross-linked three-dimensional polymeric structures containing a large amount of water. Hydrogel materials based on natural and/or synthetic biocompatible polymers are capable of imitating the structure and properties of the extracellular matrix of living tissues. Therefore, hydrogel-based materials are widely studied and developed as functional materials in various fields of biology and medicine, including the creation of biomaterials for transplantation and tissue engineering. However, hydrogels have a number of disadvantages, such as a low biomineralization capacity, low biomechanical properties, and weak ability to form biointerface with hard tissues. These properties make hydrogel-based materials unsuitable for hard tissue engineering, particularly, bone regeneration. Currently, approaches to overcome these limitations, in particular, to improve the biological activity and biomineralization of hydrogels are currently being widely developed. Materials and Methods: This study reports an efficient approach of hydrogels mineralization based on the ultrasound-assisted synthesis of calcium carbonate CaCO3 in the gellan gum hydrogel material. Results: The composite hydrogel materials based on the gellan gum with CaCO3 micron-sized particles in the vaterite polymorph, uniformly distributed within the hydrogel matrix, have been obtained. The fraction of CaCO3 in the hydrogel can easily be controlled by the number of ultrasound treatment procedures. The morphology and structure of the obtained hydrogel materials, especially the structure and distribution of the inorganic phase CaCO3, have been studied by scanning electron microscopy and X-ray diffraction. Conclusion: The proposed strategy for the hydrogel mineralization allows for to create functional composite materials with the potential for application for the tissue engineering, especially bone regeneration. 

Acknowledgments: 
This work was supported by the scholarship of the President of the Russian Federation (No. SP-727.2022.4). Authors thank Bogdan V. Parakhonskiy (Ghent University, Ghent, Belgium) and Timothy E. L. Douglas (Lancaster University, Lancaster, UK) for the assistance and support.
Reference: 
  1. Radulescu D.-M., Neacsu I. A., Grumezescu A.-M., Andronescu E. New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers (Basel), 2022, vol. 14, iss. 4, article no. 799. https://doi.org/10.3390/polym14040799
  2. Chauhan N., Saxena K., Jain U. Hydrogel based materials: A progressive approach towards advancement in biomedical applications. Mater. Today Commun., 2022, vol. 33, article no. 104369. https://doi.org/10.1016/j.mtcomm.2022.104369
  3. Hoffman A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2012, vol. 64, pp. 18–23. https://doi.org/10.1016/j.addr.2012.09.010
  4. Kailasa S. K., Joshi D. J., Kateshiya M. R., Koduru J. R., Malek N. I. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Mater. Today Chem., 2022, vol. 23, article no. 100746. https://doi.org/10.1016/j.mtchem.2021.100746
  5. Gkioni K., Leeuwenburgh S. C. G. G., Douglas T. E. L. L., Mikos A. G., Jansen J. A. Mineralization of Hydrogels for Bone Regeneration. Tissue Eng. Part B. Rev., 2010, vol. 16, pp. 577–585. https://doi.org/10.1089/ten.teb.2010.0462
  6. Douglas T., Wlodarczyk M., Pamula E., Declercq H., Mulder E. de, Bucko M., Balcaen L., Vanhaecke F., Cornelissen R., Dubruel P., Jansen J., Leeuwenburgh S. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J. Tissue Eng. Regen. Med., 2014, vol. 8, pp. 906–918. https://doi.org/10.1002/term.1616
  7. Lopez-Heredia M. A., Lapa A., Mendes A. C., Balcaen L., Samal S. K., Chai F., Voort P. Van der, Stevens C. V., Parakhonskiy B. V., Chronakis I. S., Vanhaecke F., Blanchemain N., Pamuіa E., Skirtach A. G., Douglas T. E. L. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate. Mater. Lett., 2017, vol. 190, iss. 1, pp. 13–16. https://doi.org/10.1016/j.matlet.2016.12.122
  8. Schroder R., Pohlit H., Schuler T., Panthofer M., Unger R. E., Frey H., Tremel W. Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: Relevance to bone formation. J. Mater. Chem. B, 2015, vol. 3, pp. 7079–7089. https://doi.org/10.1039/C5TB01032B
  9. Abalymov A., Lengert E., Meeren L. Van der, Saveleva M., Ivanova A., Douglas T. E. L., Skirtach A. G., Volodkin D., Parakhonskiy B. The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compounds. Mater. Sci. Eng. C, 2022, vol. 133, article no. 112632. https://doi.org/10.1016/j.msec.2021.112632
  10. Tolba E., Müller W. E. G. Abd El-Hady B. M., Neufurth M., Wurm F., Wang S., Schröder H. C., Wang X. High biocompatibility and improved osteogenic potential of amorphous calcium carbonate/vaterite. J. Mater. Chem. B, 2016, vol. 4, pp. 376–386. https://doi.org/10.1039/C5TB02228B
  11. Campbell J., Ferreira A. M., Bowker L., Hunt J., Volodkin D., Vikulina A. Dextran and Its Derivatives: Biopolymer Additives for the Modulation of Vaterite CaCO3 Crystal Morphology and Adhesion to Cells. Adv. Mater. Interfaces, 2022, vol. 9, article no. 2201196. https://doi.org/10.1002/admi.202201196
  12. Trushina D. B., Bukreeva T. V., Kovalchuk M. V., Antipina M. N. CaCO3 vaterite microparticles for biomedical and personal care applications. Mater. Sci. Eng. C, 2014, vol. 45, pp. 644–658. https://doi.org/10.1016/j.msec.2014.04.050
  13. Svenskaya Y. I., Fattah H., Zakharevich A. M., Gorin D. A., Sukhorukov G. B., Parakhonskiy B. V. Ultrasonically assisted fabrication of vaterite submicronsized carriers. Adv. Powder Technol., 2016, vol. 27, iss. 2, pp. 618–624. https://doi.org/10.1016/j.apt.2016.02.014
  14. Maeda H., Maquet V., Kasuga T., Chen Q. Z., Roether J. A., Boccaccini A. R. Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings. J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 2269–2273. https://doi.org/10.1007/s10856-007-3108-4
  15. Vuola J., Göransson H., Böhling T., Asko-Seljavaara S. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials, 1996, vol. 17, iss. 18, pp. 1761–1766. https://doi.org/10.1016/0142-9612(95)00351-7
  16. Das M., Giri T. K. Hydrogels based on gellan gum in cell delivery and drug delivery. J. Drug Deliv. Sci. Technol., 2020, vol. 56, article no. 101586. https://doi.org/10.1016/j.jddst.2020.101586
  17. Stevens L. R., Gilmore K. J., Wallace G. G., in het Panhuis M. Tissue engineering with gellan gum. Biomater. Sci., 2016, vol. 4, pp. 1276–1290. https://doi.org/10.1039/C6BM00322B
  18. Lopez-Heredia M. A., Łapa A., Reczyńska K., Pietryga K., Balcaen L., Mendes A. C., Schaubroeck D., Voort P. Van Der, Dokupil A., Plis A., Stevens C. V., Parakhonskiy B. V., Samal S. K., Vanhaecke F., Chai F., Chronakis I. S., Blanchemain N., Pamuіa E., Skirtach A. G., Douglas T. E. L. Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions. J. Tissue Eng. Regen. Med., 2018, vol. 12, pp. 1825–1834. https://doi.org/10.1002/term.2675
  19. Abalymov A., Meeren L. Van der, Skirtach A. G., Parakhonskiy B. V. Identification and Analysis of Key Parameters for the Ossification on Particle Functionalized Composites Hydrogel Materials. ACS Appl. Mater. Interfaces, 2020, vol. 12, iss. 35, pp. 38862–38872. https://doi.org/10.1021/acsami.0c06641
  20. Savelyeva M. S., Abalymov A. A., Lyubun G. P., Vidyasheva I. V., Yashchenok A. M., Douglas T. E. L., Gorin D. A., Parakhonskiy B. V. Vaterite coatings on electrospun polymeric fibers for biomedical applications. J. Biomed. Mater. Res. Part A, 2017, vol. 105, pp. 94–103. https://doi.org/10.1002/jbm.a.35870
  21. Douglas T. E. L., Piwowarczyk W., Pamula E., Liskova J., Schaubroeck D., Leeuwenburgh S. C. G., Brackman G., Balcaen L., Detsch R., Declercq H., Cholewa-Kowalska K., Dokupil A., Cuijpers V. M. J. I., Vanhaecke F., Cornelissen R., Coenye T., Boccaccini A. R., Dubruel P. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed. Mater., 2014, vol. 9, article no. 045014. https://doi.org/10.1088/1748-6041/9/4/045014
  22. Parakhonskiy B. V., Haase A., Antolini R. Sub-Micrometer Vaterite Containers: Synthesis, Substance Loading, and Release. Angew. Chemie, 2012, vol. 124, pp. 1221–1223. https://doi.org/10.1002/ange.201104316
  23. Bail A. Le, Ouhenia S., Chateigner D. Microtwinning hypothesis for a more ordered vaterite model. Powder Diffr., 2012, vol. 26, iss. 1, pp. 16–21. https://doi.org/10.1154/1.3552994
  24. Sitepu H. Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite (CaCO3) powders and a Ni-rich Ni50.7Ti49.30 alloy. Powder Diffr., 2009, vol. 24, iss. 4, pp. 315–326. https://doi.org/10.1154/1.3257906
  25. Saveleva M., Prikhozhdenko E., Gorin D., Skirtach A. G., Yashchenok A., Parakhonskiy B. Polycaprolactone-Based, Porous CaCO3 and Ag Nanoparticle Modified Scaffolds as a SERS Platform With MoleculeSpecific Adsorption. Front. Chem., 2020, vol. 7, pp. 1-11. https://doi.org/10.3389/fchem.2019.00888
  26. Bellini D., Cencetti C., Meraner J., Stoppoloni D., D’Abusco A. S., Matricardi P. An in situ gelling system for bone regeneration of osteochondral defects. Eur. Polym. J., 2015, vol. 72, pp. 642–650. https://doi.org/10.1016/j.eurpolymj.2015.02.043
  27. Robinson G., Manning C. E., Morris E. R. Conformation and Physical Properties of the Bacterial Polysaccharides Gellan, Welan, and Rhamsan. In: Dickinson E., ed. Food Polymers, Gels and Colloids. Woodhead Publ., 1991, pp. 22–33. https://doi.org/10.1533/9781845698331.22
  28. Saveleva M. S., Ivanov A. N., Chibrikova J. A., Abalymov A. A., Surmeneva M. A., Surmenev R. A., Parakhonskiy B. V., Lomova M. V., Skirtach A. G., Norkin I. A. Osteogenic Capability of Vaterite-Coated Nonwoven Polycaprolactone Scaffolds for In Vivo Bone Tissue Regeneration. Macromol. Biosci., 2021, vol. 21, article no. 2100266. https://doi.org/10.1002/mabi.202100266
  29. Svenskaya Y. I., Navolokin N. A., Bucharskaya A. B., Terentyuk G. S., Kuz’mina A. O., Burashnikova M. M., Maslyakova G. N., Lukyanets E. A., Gorin D. A. Calcium carbonate microparticles containing a photosensitizer photosens: Preparation, ultrasound stimulated dye release, and in vivo application. Nanotechnologies Russ., 2014, vol. 9, pp. 398–409. https://doi.org/10.1134/S1995078014040181
  30. Saveleva M. S., Lengert E. V., Verkhovskii R. A., Abalymov A. A., Pavlov A. M., Ermakov A. V., Prikhozhdenko E. S., Shtykov S. N., Svenskaya Y. I. CaCO3-based carriers with prolonged release properties for antifungal drug delivery to hair follicles. Biomater. Sci., 2022, vol. 10, pp. 3323–3345. https://doi.org/10.1039/D2BM00539E
Received: 
20.03.2023
Accepted: 
15.06.2023
Published: 
29.09.2023