Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Mankova A. A., Brandt N. N., Chikishev A. Y. Comparative analysis of low-frequency vibrational spectra of native and denatured proteins. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 4, pp. 340-347. DOI: 10.18500/1817-3020-2024-24-4-340-347, EDN: BGZOZH

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
25.12.2024
Full text:
(downloads: 30)
Language: 
Russian
Article type: 
Article
UDC: 
543.424.2
EDN: 
BGZOZH

Comparative analysis of low-frequency vibrational spectra of native and denatured proteins

Autors: 
Mankova Anna A., Lomonosov Moscow State University
Brandt Nikolay Nikolaevich, Lomonosov Moscow State University
Chikishev Andrey Yu., Lomonosov Moscow State University
Abstract: 

Background and Objectives: Changes in the secondary and tertiary structures of protein molecules during thermal denaturation lead to changes in their vibrational spectra. Vibrations corresponding to elements of the primary and secondary structure of the protein are manifested in the fingerprint range, while vibrational modes of large fragments corresponding to higher levels of the protein structural hierarchy can be observed in the low-frequency (40–500 cm−1) spectral range. The purpose of this work is to reveal changes in the vibrational spectra of proteins resulting from denaturation that can be used to characterize changes in the protein structure. Materials and Methods: Two proteins (collagen and chymotrypsin) having different secondary and tertiary structures are studied using Raman spectroscopy. The experimental data are analyzed using bandpass filtering of the Fourier transforms of the spectral curves. Results: Vibrational spectra of two proteins (collagen and chymotrypsin) having different secondary and tertiary structures, as well as the spectra of thermally denatured samples of these proteins have been measured in the fingerprint and low-frequency ranges. Several low-frequency spectral features that can be used to characterize structural changes of protein molecules have been considered. A few bands may correspond to vibrations of tertiary structure elements (both in the low-frequency range and in the “fingerprint” range). Conclusion: A comparison of the vibrational spectra of native and denatured (superhelical) collagen, as well as native and denatured (globular) chymotrypsin shows that changes in the amide I and amide III bands sensitive to the secondary structure are supplemented with spectral changes in bands that are not assigned to elements of the secondary structure and can be related to changes at higher levels of structural hierarchy. Comparison of the low-frequency vibrational spectra indicates a lower sensitivity of presumably tertiary structure of the globular protein to denaturation.

Acknowledgments: 
This work was supported in part by the Lomonosov Moscow State University Development Program.
Reference: 
  1. Bandekar J. Amide modes and protein conformation. Biochim. Biophys. Acta, 1992, vol. 1120, no. 2, pp. 123–143.
  2. Wen Z.-Q. Raman Spectroscopy of Protein Pharmaceuticals. Journal of Pharmaceutical Sciences, 2007, vol. 96, no. 11, pp. 2861–2878.
  3. Susi H., Byler D. M. Fourier Deconvolution of the Amide I Raman Band of Proteins as Related to Conformation. Applied Spectroscopy, 1988, vol. 42, pp. 819–826.
  4. Maiti N. C., Aperti M. M., Zagorski M. G., Carey P. R., Anderson V. E. Raman Spectroscopic Characterization of Secondary Structure in Natively Unfolded Proteins: r-Synuclein. J. Am. Chem. Soc., 2004, vol. 126, pp. 2399–2408.
  5. Brandt N. N., Chikishev A. Y., Sotnikov A. I., Savochkiba Yu. A., Agapov I. I., Tonevitsky A. G. Ricin, ricin agglutinin, and the ricin binding subunit structural comparison by Raman spectroscopy. J. Mol. Str., 2005, vol. 735, pp. 293–298.
  6. Brandt N. N., Sakodynskaya I. K., Chikishev A. Y. A study of interaction between alpha-chymotrypsin and 18-crown-6 in organic solvents by raman spectroscopy. Russian Journal of Physical Chemistry A, 2001, vol. 75, no. 6, pp. 928–932.
  7. Brandt N. N., Chikishev A.Yu., Greve J., Koroteev N. I., Otto C., Sakodynskaya I. K. Cars and raman spectroscopy of function related conformational changes of chymotrypsin. J. Raman Spec., 2000, vol. 31, pp. 731–737.
  8. Stovbun S. V., Skoblin A. A., Tverdislov V. A. Experimental observation of synergetic regularity of chirality sign change in hierarchies of biomimetic structures. Biophizika [Biophysics], 2014, vol. 59, iss. 6, pp. 1079–1084. (in Russian).
  9. Senior A. W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., Qin C., Ћнdek A., Nelson A. W. R., Bridgland A., Penedones H., Petersen S., Simonyan K., Crossan S., Kohli P., Jones D. T., Silver D., Kavukcuoglu K., Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature, 2020, vol. 577, pp. 706–710. https://doi.org/10.1038/s41586-019-1923-7
  10. Balakhnina I. A., Brandt N. N., Chikishev A. Yu., Mankova A. A., Shpachenko I. G. Low-frequency vibrational spectroscopy of proteins with different secondary structures. J. Biomed. Opt., 2017, vol. 22, no. 9, pp. 091509.
  11. Mankova A. A., Brandt N. N., Chikishev A.Yu. Raman and FTIR spectroscopy in the THz frequency range in the study of protein structure. Zurnal prikladnoj spectroscopii, 2016, vol. 83, no. 6–16, pp. 714. EDN: ZBSQCR
  12. Heilweil E. J., Plusquellic D. F. Terahertz Spectroscopy of Biomolecules. In: Susan L. Dexheimer, ed. Terahertz Spectroscopy: Principles and Applications. CRC Press, 2007, pp. 269–297.
  13. Zakaria H. A. A review: Terahertz spectroscopy as a viable dynamic tool for protein and organic molecules characterization. Malaysian Journal of Science, 2015, vol. 34, no. 1, pp. 93–102.
  14. Genzel L., Keilmann F., Martin T. P., Wintreling G., Yacoby Y., Frцhlich H., Makinen M. W. Low-frequency Raman spectra of lysozyme. Biopolymers, 1976, vol. 15, no. 1, pp. 219–225. https://doi.org/10.1002/bip.1976.360150115
  15. Tipping M., Viras K., King T. A. Low-frequency dynamics of solid poly(L-alanine) from Raman spectroscopy. Biopolymers, 1984, vol. 23, no. 12, pp. 2891–2899. https://doi.org/10.1002/bip.360231213
  16. Ronen M., Kalanoor B. S., Oren Z., Ron I., Tischler Y. R., Gerber D. Characterization of peptides self-assembly by low frequency Raman spectroscopy. RSC Advances, 2018, vol. 8, no. 29, pp. 16161–16170. https://doi.org/10.1039/c8ra01232f
  17. Fontaine-Vive F., Merzel F., Johnson M. R., Kearley G. J. Collagen and component polypeptides: Low frequency and amide vibrations. Chemical Physics, 2009, vol. 355, no. 2–3, pp. 141–148. https://doi.org/10.1016/j.chemphys.2008.12.005
  18. Lee S. H., Krimm S. Ab initio-based vibrational analysis of α-poly(L-alanine). Biopolymers, 1998, vol. 46, no. 5, pp. 283–317. https://doi.org/10.1002/(sici)1097-0282(19981015)46:53.0.co;2-l
  19. Krimm S., Bandekar J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Advances in Protein Chemistry, 1986, vol. 38, pp. 181–364. https://doi.org/10.1016/s0065-3233(08)60528-8
  20. Nielsen O. F., Bigio I. J., Olsen I., Berquier J. M. Low-frequency (20–400 cm−1 ) vibrational spectra of N-methylacetamide in the liquid state. Chemical Physics Letters, 1986, vol. 132, no. 6, pp. 502–506. https://doi.org/10.1016/0009-2614(86)87112-3
  21. Brandt N. N., Chikishev A. Y., Mankova A. A., Sakodynskaya I. K. Effect of thermal denaturation, inhibition, and cleavage of disulfide bonds on the low-frequency Raman and FTIR spectra of chymotrypsin and albumin. Journal of Biomedical Optics, 2014, vol. 20, no. 5, pp. 051015 (1–6). https://doi.org/10.1117/1.jbo.20.5.051015
  22. Shigeto S., Chang C. F., Hiramatsu H. Directly Probing Intermolecular Structural Change of a Core Fragment of β2-Microglobulin Amyloid Fibrils with Low-Frequency Raman Spectroscopy. The Journal of Physical Chemistry B, 2017, vol. 121, no. 3, pp. 490–496. https://doi.org/10.1021/acs.jpcb.6b10779
  23. Kalanoor B. S., Ronen M., Oren Z., Gerber D., Tischler Y. R. New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer. ACS Omega, 2017, vol. 2, no. 3, pp. 1232–1240. https://doi.org/10.1021/acsomega.6b00547
  24. Kuhar N., Sil S., Umapathy S. Potential of Raman spectroscopic techniques to study proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, vol. 258, pp. 119712. https://doi.org/10.1016/j.saa.2021.119712
  25. Eaves J. D., Fecko C. J., Stevens A. L., Peng P., Tokmakoff A. Polarization-selective femtosecond Raman spectroscopy of low-frequency motions in hydrated protein films. Chemical Physics Letters, 2003, vol. 376, no. 1–2, pp. 20–25. https://doi.org/10.1016/s0009-2614(03)00890-x
  26. Itoh K., Shimanouchi T. Breathing vibration of poly-L-alanine α-helix. Biopolymers, 1971, vol. 10, no. 8, pp. 1419–1420. https://doi.org/10.1002/bip.360100812
  27. Bozec L., Odlyha M. Thermal Denaturation Studies of Collagen by Microthermal Analysis and Atomic Force Microscopy. Biophys. J., 2011, vol. 101, no. 1, pp. 228–236.
  28. Lund P. A., Nielsen O. F., Praestgaard E. Comparison of the depolarized rayleigh-wing scattering and far-infrared absorption in molecular liquids. Chemical Physic., 1978, vol. 28, no. 1–2, pp. 167–173.
  29. Djabourov M., Leblond J., Papon P. Gelation of aqueous gelatin solutions. I. Structural investigation. J. Phys. France, 1988, vol. 49, pp. 319–332.
  30. Shoulders M. D., Raines R. T. Collagen structure and stability. Annual Review of Biochemistry, 2009, vol. 78, pp. 929–958.
  31. Fidler A. L., Boudko S. P., Rokas A., Hudson B. G. The triple helix of collagens – an ancient protein structure that enabled animal multicellularity and tissue evolution. Journal of Cell Science, 2018, vol. 131, iss. 7, article no. 203950. https://doi.org/10.1242/jcs.203950
  32. Rygula A., Majzner K., Marzec K. M., Kaczor A., Pilarczyk M., Baranska M. Raman spectroscopy of proteins: A review. Journal of Raman Spectroscopy, 2013, vol. 44, no. 8, pp. 1061–1076.
  33. Lуpez-Peсa I., Leigh B. S., Schlamadinger D. E., Kim J. E. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy. Biochemistry, 2015, vol. 54, no. 31, pp. 4770–4783.
  34. Colaianni S. E. M., Nielsen O. F. Low-frequency Raman spectroscopy. Journal of Molecular Structure, 1995, vol. 347, pp. 267–283. https://doi.org/10.1016/0022-2860(95)08550-f
  35. Fanconi B. Low-frequency vibrational spectra of some homopolypeptides in the solid state. Biopolymers, 1973, vol. 12, no. 12, pp. 2759–2776. https://doi.org/10.1002/bip.1973.360121210
  36. Moore W. H., Krimm S. Vibrational analysis of peptides, polypeptides, and proteins. II. β-Poly(L-alanine) and β-poly(L-alanylglycine). Biopolymers, 1976, vol. 15, no. 12, pp. 2465–2483. https://doi.org/10.1002/bip.1976.360151211
Received: 
28.06.2024
Accepted: 
30.07.2024
Published: 
25.12.2024