Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Serov V. V., Kadgaeva V. P., Derbov V. L., Vinitskiy S. l. Classical analysis of recombination of antihydrogen in a strong magnetic field. Izvestiya of Saratov University. Physics , 2005, vol. 5, iss. 1, pp. 84-91. DOI: 10.18500/1817-3020-2005-5-1-84-91

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
17.11.2005
Full text:
(downloads: 149)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.18

Classical analysis of recombination of antihydrogen in a strong magnetic field

Autors: 
Serov Vladislav Viktorovich, Saratov State University
Kadgaeva V. P., Saratov State University
Derbov Vladimir Leonardovich , Saratov State University
Vinitskiy Sergei ll'ich, Joint Institute for Nuclear Research
Abstract: 

Basing on numerical simulation of classical trajectories, the influence of a strong magnetic field on the rate of the spontaneous radiative recombination of antihydrogen atoms in cold antiproton-positron plasma is theoretically studied under the conditions of the ATHENA and ATRAP experiments carried out in CERN. The effect of the magnetic field is estimated by Monte-Carlo calculation of the change in the cross section of the positron hitting the near-nucleus region with the radius typical for the atomic ground state. Although the trajectory of the positron in the magnetic and Coulomb fields is shown to be rather complicated, and the positron may pass by the nucleus many times, no significant influence of the magnetic field on the recombination rate was found within the approximations used. 

Reference: 
  1. Меньшиков Л.И., Ландуа Р. Состояние исследований по «холодному» антиводороду // Успехи физических наук. Обзоры актуальных проблем. 2003. Т. 173, №3. С. 233-263.
  2. The ATHENA / AD-1 Collaboration. Progress Report on the ATHENA Experiment / CERN / SPSC 2003-016. - SPSC - M-699. -2003. 19 March.
  3. Amoretti M. et al. Production and detection of cold antihydrogen atoms // Nature. 2002. V. 419. P. 456-458.
  4. Gabrielse G. et al. Background-Free Observation of Cold Antihydrogen with Field-Ionization Analysis of Its States // Phys. Rev. Lett. 2002. V. 89. P. 213401-1-4.
  5. Robicheaux F., Hanson James D. Three-body recombination for protons moving in a strong magnetic field // Phys. Rev. A. 2004. V. 69. P. 10701-1-4.
  6. Gutzwiller M.C. Chaos in Classical and Quantum Mechanics. N.Y., Springer, 1990.
  7. Соболь И.М. Численные методы Монте-Карло. М., 1973.
  8. Форсайт Г.Д.Ж., Малкольм М.А., Моулер К.Б. Машинные методы вычислений. М., 1980. С. 127-171.
  9. Gwinner G. et al. Influence of Magnetic on Electron-Ion Recombination at Very Low Energies // Phys. Rev. Lett. 2000. V. 84. P. 4822-4825.
  10. Serov V.V., Derbov V.L. Spontaneous recombination of antihydrogen in a magnetic field: a new approach // Proc. SPIE. 2004. V. 5476. P. 180-188.
Received: 
02.06.2005
Accepted: 
11.10.2005
Published: 
17.11.2005