For citation:
Sakharov V. K., Khivintsev Y. V., Dzhumaliev A. S., Nikulin Y. V., Kozhevnikov A. V., Filimonov Y. A. Channeling of magnetostatic surface waves by decoration of ferrite films with metals. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 1, pp. 76-87. DOI: 10.18500/1817-3020-2024-24-1-76-87, EDN: OACSTN
Channeling of magnetostatic surface waves by decoration of ferrite films with metals
Background and Objectives: One of the main tasks for developing magnonic devices is to form and control spin wave beams. For this purpose, the decoration of ferrite films with magnetic or non-magnetic metal areas can be used. The aim of this work is to study the peculiarities of magnetostatic surface wave (MSSW) propagation in the channels formed in yttrium-iron garnet (YIG) films by deposition of 1.5 μm thick metal decorations from chromium (Cr) and permalloy (Py). Materials and Methods: Studied samples were fabricated on the base of 6.5 μm-thick epitaxial YIG film by the DC magnetron sputtering, photolithography, and ion etching techniques. Frequency dependencies of magnitude and phase of the transmitted MSSW signal at different applied magnetic field were measured with the help of a vector network analyzer and a microwave probe station. Calculation of the dispersions and insertion losses for MSSW propagating in the metallized YIG film was performed on the basis of Maxwell’s equations in the magnetostatic approximation, the Landau-Lifshitz equation, and standard electrodynamic boundary conditions. Results and Conclusion: The optimal channel width w relative to the antenna aperture providing channeling of the MSSW signal with the possibility of “antireflective effect” for the transmitted signal has been found to be w = 200 μm. It has been shown that for the formation of channeling effect, one needs to use a non-magnetic metal with the thickness leading to a transition to the “metallic” branch of the MSSW dispersion or a magnetic metal with the thickness resulting in bending of a short-wavelength part of MSSW dispersion. For the studied samples, it is d(Cr) = 1.5 μm and d(Py) = 30 nm, respectively. The obtained results demonstrate the possibility of using the channels in metallic decorations for the formation of directed spin wave beams.
- Khitun A. G., Kozhanov A. E. Magnonic Logic Devices. Izvestiya of Saratov University. Physics, 2017, vol. 17, iss. 4, pp. 216–241 (in Russian). https://doi.org/10.18500/1817-3020-2017-17-4-216-241
- Kruglyak V. V., Demokritov S. O., Grundler D. Magnonics. J. Phys. D. Appl. Phys., 2010, vol. 43, no. 26, article no. 264001. https://doi.org/10.1088/0022-3727/43/26/264001
- Serga A. A., Chumak A. V., Hillebrands B. YIG magnonics. J. Phys. D. Appl. Phys., 2010, vol. 43, no. 26, article no. 264002. https://doi.org/10.1088/0022-3727/43/26/264002
- Barman A., Gubbiotti G., Ladak S., Adeyeye A. O., Krawczyk M., Gräfe J., Adelmann C., Cotofana S., Naeemi A., Vasyuchka V. I., Hillebrands B., Nikitov S. A., Yu H., Grundler D., Sadovnikov A. V., Grachev A. A., Sheshukova S. E., Duquesne J.-Y., Marangolo M., Csaba G., Porod W., Demidov V. E., Urazhdin S., Demokritov S. O., Albisetti E., Petti D., Bertacco R., Schultheiss H., Kruglyak V. V., Poimanov V. D., Sahoo S., Sinha J., Yang H., Münzenberg M., Moriyama T., Mizukami S., Landeros P., Gallardo R. A., Carlotti G., Kim J.-V., Stamps R. L., Camley R. E., Rana B., Otani Y., Yu W., Yu T., Bauer G. E. W., Back C., Uhrig G. S., Dobrovolskiy O. V., Budinska B., Qin H., van Dijken S., Chumak A. V., Khitun A., Nikonov D. E., Young I. A., Zingsem B. W., Winklhofer M. The 2021 magnonics roadmap. J. Phys.: Cond. Matt., 2021, vol. 33, no. 41, article no. 413001. https://doi.org/10.1088/1361-648X/abec1a
- Gertz F., Kozhevnikov A., Filimonov Y., Khitun A. Magnonic holographic memory. IEEE Trans. Magn., 2015, vol. 51, iss. 4, article no. 4002905. https://doi.org/10.1109/TMAG.2014.2362723
- Khivintsev Y. V., Sakharov V. K., Kozhevnikov A. V., Dudko G. M., Filimonov Y. A., Khitun A. Spin waves in YIG based magnonic networks: Design and technological aspects. J. Magn. Magn. Mater., 2022, vol. 545, article no. 168754. https://doi.org/10.1016/j.jmmm.2021.168754
- Davies C. S., Sadovnikov A. V., Grishin S. V., Sharaevsky Y. P., Nikitov S. A., Kruglyak V. V. Field-Controlled Phase-Rectified Magnonic Multiplexer. IEEE Trans. Magn., 2015, vol. 51, iss. 11, article no. 3401904. https://doi.org/10.1109/TMAG.2015.2447010
- Papp Б., Porod W., Csurgay Б. I., Csaba G. Nanoscale spectrum analyzer based on spin-wave interference. Sci. Rep., 2017, vol. 7, article no. 9245. https://doi.org/10.1038/s41598-017-09485-7
- Gieniusz R., Gruszecki P., Krawczyk M., Guzowska U., Stognij A., Maziewski A. The switching of strong spin wave beams in patterned garnet films. Sci. Rep., 2017, vol. 7, article no. 8771. https://doi.org/10.1038/s41598-017-06531-2
- Dudko G. M., Kozhevnikov A. V., Saharov V. K., Stalmahov A. V., Filimonov Y. A., Khivintsev Y. V. Calculation of Focusing Spin Wave Transducers Using the Method of Micromagnetic Simulation. Izvestiya of Saratov University. Physics, 2018, vol. 18, iss. 2, pp. 92–102 (in Russian). https://doi.org/10.18500/1817-3020-2018-18-2-92-102
- Beginin E. N., Sadovnikov A. V., Sharaevskaya A. Y., Stognij A. I., Nikitov S. A. Spin wave steering in three-dimensional magnonic networks. Appl. Phys. Lett., 2018, vol. 112, iss. 12, article no. 122404. https://doi.org/10.1063/1.5023138
- Sakharov V. K., Beginin E. N., Khivintsev Y. V., Sadovnikov A. V., Stognij A. I., Filimonov Y. A., Nikitov S. A. Spin waves in meander shaped YIG film: Toward 3D magnonics. Appl. Phys. Lett., 2020, vol. 117, iss. 2, article no. 022403. https://doi.org/10.1063/5.0013150
- Stancil D. D., Morgenthaler F. R. Guiding magnetostatic surface waves with nonuniform in-plane fields. J. Appl. Phys., 1983, vol. 54, iss. 3, pp. 1613–1618. https://doi.org/10.1063/1.332146
- Annenkov A. Y., Gerus S. V., Kovalev S. I. Bulk and Surface-Bulk Magnetostatic Waves in Waveguides Produced by a Step Bias Field. Tech. Phys., 2004, vol. 49, iss. 2, pp. 239–244. https://doi.org/10.1134/1.1648962
- Vugalter G. A., Korovin A. G. Total internal reflection of backward volume magnetostatic waves and its application for waveguides in ferrite films. J. Phys. D. Appl. Phys., 1998, vol. 31, no. 11, pp. 1309–1319. https://doi.org/10.1088/0022-3727/31/11/004
- Khivintsev Y. V., Dudko G. M., Sakharov V. K., Nikulin Y. V., Filimonov Y. A. Propagation of Spin Waves in Microstructures Based on Yttrium – Iron Garnet Films Decorated by a Ferromagnetic Metal. Phys. Solid State, 2019, vol. 61, iss. 9, pp. 1614–1621. https://doi.org/10.1134/S1063783419090129
- Sakharov V. K., Khivintsev Y. V., Dzhumaliev A. S., Nikulin Y. V., Seleznev M. E., Filimonov Y. A. Propagation of spin waves in channels formed by decoration of the surfaces of yttrium-iron garnet films by thin metal areas. Phys. Solid State, 2023, vol. 65, iss. 7, pp. 1134–1140. https://doi.org/10.21883/PSS.2023.07.56404.20H
- Kanazawa N., Goto T., Hoong J. W., Buyandalai A., Takagi H., Inoue M. Metal thickness dependence on spin wave propagation in magnonic crystal using yttrium iron garnet. J. Appl. Phys., 2015, vol. 117, article no. 17E510. https://doi.org/10.1063/1.4916815
- Seshadri S. R. Surface Magnetostatic Modes of a Ferrite Slab. Proc. IEEE, 1970, vol. 58, iss. 3, pp. 506–507. https://doi.org/10.1109/PROC.1970.7680
- Camley R. E., Maradudin A. A. Magnetostatic interface waves in ferromagnets. Solid State Commun., 1982, vol. 41, iss. 8, pp. 585–588. https://doi.org/10.1016/0038-1098(82)90946-2
- Zubkov V. I., Epanechnikov V. A., Shcheglov V. I. Dispersion Characteristics of Magnetostatic Surface Waves in a Two-Layer Ferromagnetic Film. J. Commun. Technol. Electron., 2007, vol. 52, no. 2, pp. 179–188. https://doi.org/10.1134/S1064226907020076
- Zubkov V. I., Lokk E. G., Nam B. P., Khe A. S., Scheglov V. I. Dispersion of magnetostatic surface waves in two-layer ferrite films. Zhurnal Tekhnicheskoi Fiz., 1989, vol. 59, iss. 12, pp. 115–117 (in Russian).
- Damon R. W., Eshbach J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids, 1961, vol. 19, iss. 3–4, pp. 308–320. https://doi.org/10.1016/0022-3697(61)90041-5
- Khivintsev Y. V., Filimonov Y. A., Nikitov S. A. Spin wave excitation in yttrium iron garnet films with micronsized antennas. Appl. Phys. Lett., 2015, vol. 106, article no. 052407. https://doi.org/10.1063/1.4907626
- Donahue M. J., Porter D. G. OOMMF user’s guide, version 1.0. Gaithersburg, MD, NIST. 1999. 83 p. https://doi.org/10.6028/NIST.IR.6376
- Filimonov Y. A., Khivintsev Y. V. Interaction between a Magnetostatic Surface Wave and Bulk Elastic Waves in a Metallized Ferromagnet–Dielectric Structure. J. Commun. Technol. Electron., 2002, vol. 47, no. 8, pp. 910–915.
- Mruczkiewicz M., Krawczyk M. Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal. J. Appl. Phys., 2014, vol. 115, article no. 113909. https://doi.org/10.1063/1.4868905
- Kolodin P. A., Gromova Y. V., Kostylev M. P. Effect of Surface Spin Pinning on the Spin-Wave Propagation in Yttriun Iron Garnet Films. IEEE Trans. Magn., 1997, vol. 33, iss. 6, pp. 4465–4468. https://doi.org/10.1109/20.649883
- 475 reads