Cite this article as:

Belousov A. V., Belianov A. А., Chernyaev A. P. Calculation and Approximation of Radial Dose Function of Iridium Sources. Izvestiya of Saratov University. New series. Series Physics, 2016, vol. 16, iss. 4, pp. 203-211. DOI: https://doi.org/10.18500/1817-3020-2016-16-4-203-211


UDC: 
53.06
Language: 
Russian

Calculation and Approximation of Radial Dose Function of Iridium Sources

Abstract

Background and Objectives: The purpose of this paper is to investigate optimal fitting parameters for approximating radial dose function of Iridium sources. Calculations were performed using written by authors source code based on GEANT4 library package designed to simulate particle transport processes using Monte–Carlo method. Results: Following parameters of the source were determined: dose rate constant, radial dose function and anisotropy function. Obtained satisfactory coherence with other researchers’ data. The data obtained using developed and verified code could be used in treatment planning system (TPS). In addition, this paper presents improved functional form for fitting radial dose function (RDF) brachytherapy sealed sources with Ir-192. Suggested functions allow for fitting RDF precisely in a range of 0,5–20 cm. Maximum deviations between fit data and Monte–Carlo simulation data don’t exceed 0,6%, while average deviation is around 0,1%. Fitting coefficients for suggested functions are presented for 11 sources from different manufacturers. Conclusion: Suggested functions are suitable for using in TPS to calculate radial dose distributions around sources more precisely, using broad range of data using TG-43 protocol.

References

1. Li Z., Das R. K., DeWerd L. A., Ibbott G. S., Meigooni A. S., Perez-Calatayud J., Rivard M. J., Sloboda R. S., Williamson J. F. Dosimetric prerequisites for routine clinical use of photon emitting brachytherapy sources with average energy higher than 50 kev. Med. Phys., 2007, vol. 34, pp. 37.

2. Nath R., Anderson L. L., Luxton G., Weaver K. A., Williamson J. F., Meigooni A. S. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group no. 43. American Association of Physicists in Medicine. Med. Phys., 1995, vol. 22, pp. 209.

3. Rivard M. J., Coursey B. M., DeWerd L. A., Hanson W. F., Huq M. S., Ibbott G. S., Mitch M. G., Nath R., Williamson J. F. Update of AAPM Task Group no. 43 Report: A revised AAPM protocol for brachytherapy dose calculations, Med. Phys., 2004, vol. 31, pp. 633.

4. Selvam T., Bhola S. Technical note: EGSnrc-based dosimetric study of the BEBIG 60Co HDR brachytherapy sources. Med. Phys., 2010, vol. 37, iss. 3, pp. 1365. 

5. Taylor R., Rogers D. EGSnrc Monte–Carlo calculated dosimetry parameters for 192Ir and 169Yb brachytherapy sources. Med. Phys., 2008, vol. 35, iss. 11, pp. 28.

6. Vijande J., Granero D., Perez-Calatayud J., Ballester F. Monte–Carlo dosimetric study of the Flexisource Co-60 high dose rate source. J. Contemp. Brachyther., 2012, vol. 4, no. 1, pp. 34.

7. Ballester F., Granero D., Pérez-Calatayud J., Casal E., Agramunt S., Cases R. Monte–Carlo dosimetric study of the BEBIG Co-60 HDR source. Phys. Med. Biol., 2005, vol. 50, pp. 309.

8. Granero D., Perez-Calatayud J., Ballester F. Technical note: Dosimetric study of a new Co-60 source used in brachytherapy. Med. Phys., 2007, vol. 34, iss. 9, pp. 3485.

9. Pérez-Calatayud J., Granero D., Casal E., Ballester F., Puchades V. Monte–Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources. Med. Phys., 2005, vol. 32, iss. 1, pp. 28.

10. Ballester F., Granero D., Pérez-Calatayud J., Casal E., Puchades V. Monte–Carlo dosimetric study of best industries and alpha omega Ir-192 brachytherapy seeds. Med. Phys., 2004, vol. 31, pp. 3298.

11. Casado F. J., García-Pareja S., Cenizo E., Mateo B., Bodineau C., Galán P. Dosimetric characterization of an 192Ir brachytherapy source with the Monte–Carlo code PENELOPE. Physica Med., 2010, vol. 26, pp. 132.

12. Williamson J., Li Z. Monte–Carlo aided dosimetry of the microselectron pulsed and high dose-rate 192Ir sources. Amer. Assoc. Phys. Med. 1995, vol. 22, iss. 6, pp. 809.

13. Papagiannis P., Angelopoulos A., Pantelis E., Sakelliou L., Karaiskos P., Shimizu Y. Monte–Carlo dosimetry of 60Co HDR brachytherapy sources. Med. Phys., 2003, vol. 30, pp. 712.

14. National Nuclear Data Center NuDat 2.6. Available at: http://www.nndc.bnl.gov/nudat2 (accessed 24 May 2016).

15. Granero D., Perez-Calatayud J., Pujades-Claumarchirant M. C., Ballester F., Melhus C. S., Rivard M. J. Equivalent phantom sizes and shapes for brachytherapy dosimetric studies of 192Ir and 137Cs. Medical Physics, 35, 4872–4877. 15. Med. Phys., 2008, vol. 35, pp. 4872.

16. Furhang E. E., Anderson L. L. Functional fi tting of interstitial brachytherapy dosimetry data recommended by the AAPM Radiation Therapy Committee Task Group no. 43. American Association of Physicists in Medicine. Med. Phys., 1999, vol. 26, pp. 153.

17. Moss D. Technical note: improved analytical fi t to the TG-43 radial dose function, g(r). Med. Phys., 2000, vol. 27, pp. 659.

18. Meigooni A. S., Zhang H., Perry C., Dini S. A., Koona R. A. Theoretical and experimental determination of dosimetric characteristics for brachyseed Pd-103, model Pd-1, source. Appl. Radiat. Isot., 2003, vol. 58, pp. 533.

19. Granero D., Perez-Calatayud J., Ballester F. Monte–Carlo calculation of the TG-43 dosimetric parameters of a new BEBIG Ir-192 HDR source. Rad. Oncol., 2005, vol. 76, pp. 79.

20. Taylor R. E. P., Rogers D. W. O. The CLRP TG-43 Parameter Database for Brachytherapy. Available at: http://www.physics.carleton.ca/clrp/seed_database/ (accessed 24 May 2016).

Short text (in English): 
Full text (in Russian):