Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Vacas-Jacque P., Ryabukho V. P., Strojnik M., Tuchin V. V., Paez G. Ballistic Auto-Correlation Interferometry. Izvestiya of Saratov University. Physics , 2009, vol. 9, iss. 2, pp. 3-13. DOI: 10.18500/1817-3020-2009-9-2-3-13

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 114)
Language: 
Russian
Heading: 
UDC: 
535.4; 535.317

Ballistic Auto-Correlation Interferometry

Autors: 
Vacas-Jacque Paulino, Centra de Investigaciones en Optica (Leon)
Ryabukho Vladimir Petrovich, Saratov State University
Strojnik Marija, Centra de Investigaciones en Optica (Leon)
Tuchin Valery Viсtorovich, Science Medical Center, Saratov State University
Paez Gonzalo, Centra de Investigaciones en Optica (Leon)
Abstract: 

We propose the implementation of a ballistic auto-correlation interferometer (BAI) for the assessment of biological tissues. We develop the theory of the interferometric technique, and demonstrate that a method to isolate ballistic from forward-scattered contributions is of central importance. We, therefore, propose theoretically and experimentally a non-linear grating-based angular filter. A monochromatic source incident on a ruled grating, positioned at grazing diffraction, is followed by a narrow slit to conform the proposed system. We validate the angular amplification experimentally, with values ranging on the order of 10-20X. In addition, similar values of transversal beam size reduction, provide an efficient -100X filtering scheme. As a preliminary study for the implementation of the BAI, we compare two transillumination schemes, which include and exclude the grating-based angular filter. Our preliminary results are encouraging, and indicate that the filter effectively isolates the information needed in the BAI.

Reference: 

1. Patterson M., Wilson В., Wyman D. 1Ъе propagation of optical radiation in tissue. 1. Models of radiation transport and their application // Lasers Med. Sci. 1991. Vol.6. P.155-168.

2. Cubeddu R, Pifferi A., Taroni P., Torricelli A., Valentini G. Experimental test of theoretical models for time-resolved reflectance // Med. Phys. 1996. Vol.23. P.1625-1633.

3. Arridge S., Hebden J. Optical imaging in medicine: II. Modelling and reconstruction // Phys. Med. Biol. 1997. Vol.42.1.5. P.841-853.

4. Kim A. Transport theory for light propagation in biological tissue//J. Opt. Soc. Amer. A. 2004. Vol.21.1.5. P.820-827.

5. Patterson M., Wilson В., Wyman D. The propagation of optical radiation in tissue. II. Optical properties of tissues and resulting fluence distributions // Lasers Med. Sci. 1991. Vol.6. 1.4. P.379-390.

6. Flock S., Wilson В., Patterson M. Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm // Med. Phys. 1987. Vol.14. 1.5. P.835-841.

7. Cheong W., Prahl S., Welch A. A review of the optical properties of biological tissues // IEEE J. Quantum Elect. 1990. Vol.26(12). P.2166-2185.

8. Лычагов В.В., ЛяшнД.В., Модель М.Д., Рябухо В.П. Автокорреляционная низкокогерентная интерферометрия рассеивающих и слоистых объектов // Компьютерная оптика. 2007. Т.31, №3. С.40-51.

9. Modell M, Ryahukho V, Lyakin D., Lychagov V., Vitkin E., Itzkan L, Perelman L. Autocorrelation low coherence interferometry // Opt. Commun. 2008. Vol.281, №8. Р.199Ы996.

10. Vacas-Jacques P., Paez G,, Strojnik M. Pass-through photon-based biomedical transillumination // J. Biomed. Opt. 2008. Vol.13.1.4. P.301-307.

11. Vacas-Jacques P., Strojnik M., Paez G. Forward-calculated analytical interferograms in pass-through photon-based biomedical transillumination // J. Opt. Soc. Amer. A 2009. Vol.26.1.3. P.602-612.

12. Vacas-Jacques P., Ryabukho V., Strojnik M., Tuchin V., Paez G. Theoretical diffractive filter performance for ballistic transillumination // Сотр. Opt. / Компьютерная оптика. 2009. Т.ЗЗ, №2. С. 129-137.

13. Sun К., Buchman S., Byer R. Grating angle magnification enhanced angular and integrated sensors for LISA applications //J. Phys.: Conf. Ser.2006. Vol.32.1.1. P. 167-179.

14. Sun К., Вуег Я. Grating angle magnification enhanced angular sensor and scanner: United States Patent №20080002197A1, Palo Alto(CA), 2008. Appl.№l 1/820. P.720.

15. Vacas-Jacques P., Ryabukho V., Strojnik M, Tuchin V., Paez G. Non-linear grating-based angular filter for ballistic transillumination // Proc. SPIE. Novel Optical Instrumentation for Biomedical Applications / Ed. C.Depcursinge. Bellingham (WA), 2009. Vol.7371.

16. Pogue В., Patterson M. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimctry // J. Biomed. Opt. 2006. Vol.11.1.4. P.096-102.

17. Fried D., Featherstone J., Darling C, Jones R., Ngaotheppitak P., BiXhler C. Early caries imaging and monitoring with near-infrared light // Dent. Clin. North Amer. 2005. Vol.49. 1.4. P.771-793.