Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Semenov A. N., Lugovtsov A. E., Lee K., Fabrichnova A. A., Kovaleva Y. A., Priezzhev A. V. Applying Methods of Diffuse Light Scattering and Optical Trapping for Assessing Blood Rheological Parameters: Erythrocytes Aggregation in Diabetes Mellitus. Izvestiya of Saratov University. Physics , 2017, vol. 17, iss. 2, pp. 85-97. DOI: 10.18500/1817-3020-2017-17-2-85-97

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 204)
53.06; 612.117; 76.03.29

Applying Methods of Diffuse Light Scattering and Optical Trapping for Assessing Blood Rheological Parameters: Erythrocytes Aggregation in Diabetes Mellitus

Semenov Alexey Nikolaevich, Lomonosov Moscow State University
Lugovtsov Andrey Egorovich, Lomonosov Moscow State University
Lee Kisung, Lomonosov Moscow State University
Fabrichnova Anastasia Anatol'evna, Lomonosov Moscow State University
Kovaleva Yulia Aleksandrovna, Moscow Regional Scientific Research Clinical Institute named after MF Vladimirsky
Priezzhev Alexander Vasil'evich, Lomonosov Moscow State University

Background and Objectives: Aggregation parameters of blood characterize red blood cells interaction processes which play a major role in the microcirculation regulation. It was shown that these parameters are significantly different in case of Diabetes Mellitus (DM) and therefore can be proposed as a novel parameter of the disease state and therapy efficiency. Usage of diffuse methods of measuring aggregation properties in whole blood combined with the single cell level measuring technique will allow creating a new complete approach to investigate the hemorheological state of the blood in various socially important disease. Materials and Methods: For assessing the time of spontaneous aggregation, hydrodynamic strength, aggregation index and deformability properties of ensemble of RBCs in whole blood we used commercially available aggregometer Rheoscan-AnD300 (Rheomeditech, Korea). Operation of this device is based on measuring the intensity of laser light scattered by whole blood samples. Measurements of RBC aggregating/disaggregating forces were performed using home-made 2-channelled optical tweezer (OT) in high-diluted autologous plasma. Two cells were manipulated and brought to the 40% of cell surface contact forming an aggregate. The minimal trapping force required to prevent the complete aggregation (aggregating force FA) was measured. The minimal trapping force required to disassemble the aggregate completely (disaggregating force FD) was also measured. Results: The measurements of RBC interaction forces were performed in groups of healthy donors and patients suffering from DM. The measured value of the aggregation force in DM was FA = 4.2 ± 1.2 pN which 1.5 times exceeds the aggregating force in norm (FA = 2.7 ± 1.5 pN) while the disaggregating forces FD were found to be nearly the same. DM is characterized by enhanced aggregation. It was shown that the characteristic time of aggregates formation is reduced in whole blood of patients with DM relative to the control group. Conclusions: The statistically significant difference in aggregating forces in norm and DM allowed to propose a novel aggregating parameter R = FD / FA which can diagnose the microrheological state of the pathological blood in case of DM. Information about alterations of the time of aggregates formation can be considered as an indication of DM as well as for monitoring the patients treatment efficiency.


1. Levtov V. A., Reriger S. A., Shadrina N. Ch. Reologia krovi [Blood rheology]. Moscow, Medicine Publ., 1982. 272 p. (in Russian).

2. Sokolova I. A. Erythrocyte aggregation. Regional Haemodynamics and Microcirculation, 2010, vol. 9, no. 4, pp. 4–26 (in Russian).

3. Le Devehat, Vimeux M., Bondoux G., Bertrand A. Red blood cells aggregation and disaggregation in diabetes mellitus // Clinical Hemorheology. 1989. Vol. 9. P. 845–854.

4. Singh M., Shin S. Hemorheological Disorders in Diabetes Mellitus // Indian J. Exp. Biol. 2009. Vol. 47. P. 7–15.

5. Muravyov A. V., Zamushlyaev A. V., Tikhomirova I. A, Chuchkanov F. A., Bulaeva S. V., Maimistova A. A. Izmenenie reologicheskogo profi lia u bol’nykh diabetom 1 i 2 tipa pri lechenii Trentalom [Rheological profi le change in patients suffering from Diabetes Mellitus types 1 and 2 during Tentral therapy]. Klinicheskaya Pharmakologia i Therapia [Clinical Pharmacology and Therapy], 2009, no. 2, pp.87–90 (in Russian).

6. Kuznik B. I., Vitkovskii Yu. A., Zakharova M. Yu., Klyuchereva N. N., Rodnina O. S., Solpov A. V. Aggregation activity of blood formed elements in patients with type 1 and type 2 diabetes mellitus. Diabetes Mellitus Journal, 2012, vol. 2, pp. 49–53 (in Russian).

7. Firsov N. N., Korotaeva T. V., Vishlova V. A. Klassifikatsiia tiazhesti gemoreologicheskikh rasstroistv [Hemorheological disorders gravity classifi cation]. In: Rheologicheskie issledovania v medicine [Rheological investigations in medicine]. Moscow, 2000, iss. 2, pp. 136–141 (in Russian).

8. Baskurt K., Meiselman H. J. Hemodynamic effects of red blood cell aggregation // Indian J. of Exp. Biol. 2007. Vol. 45, № 1. P. 25–31.

9. Baskurt K., Meiselman H.J. Erythrocyte aggregation: basic aspects and clinical importance // Clin. Hemorheol. Microcirc. 2013. Vol. 53, № 1–2. P. 23–37.

10. Muravyov A. V., Cheporov S. V. Gemoreologiia (eksperimental’nye i klinicheskie aspekty reologii krovi) [Hemorheology (experimental and clinical aspects of blood rheology)]. Yaroslavl’, 2009, YSPU Publ. 178 p. (in Russian).

11. Muravyov A. V., Tikhomirova I. A., Bulaeva S. V., Vdovin V. A., Muravyov A. A. The study of the role of individual blood characteristics in its fl uidity alteration and transport effi ciency. Russian Journal of Biomechanics, 2012, vol. 16, no. 3 (57), pp. 32–41.

12. Sokolova I. A., Koshelev V. B. Syndrom of increased blood viscosity. Tekhnologii Zhivykh Sistem [Living Systems Technologies], 2011, vol. 8, no. 6, pp. 78–81 (in Russian).

13. Baskurt O. K., Uyuklu M., Ulker P., Cengiz M., Nemeth N., Alexy T., Shin S., Hardeman M., Meiselman H. J. Comparison of three instruments for measuring red blood cell aggregation // Clin. Hemorheol. Microcirc. 2009. Vol. 43, № 4. P. 283–298.

14. Lopatin V. N., Priezzhev A. V., Aponasenko A. D., Shepelevich N. V., Pozilenkova P. V., Prostakova I. V. Metody svetorasseianiia v analize dispersnykh biologicheskikh sred [Light scattering methods in disperse biological environments analysis]. Moscow, PhysMatLit, 2004. 384 p. (in Russian).

15. Hardeman M. R., Dobbe J. G. G., Ince C. The laserassisted optical rotational cell analyzer (LORCA) as red blood cell aggregometer // Clin. Hemorheol. Microcirc. 2001. Vol. 25, № 1. P. 1–11.

16. Priezzhev A. V., Lee K., Firsov N. N., Lademann J. Optical study of RBC aggregation in whole blood samples and single cells. Chapter 1 // Handbook of Optical Biomedical Diagnostics / ed. V. V. Tuchin. 2nd ed. : in 2 vol. Vol. 2 : Methods Bellingham : SPIE Press, 2016. P. 5–36.

17. Shin S., Yang Y., Suh J.S. Measurement of erythrocyte aggregation in a microchip-based stirring system by light transmission // Clin. Hemorheol. Microcirc. 2009. Vol. 41. P. 197–207.

18. Kiesewetter H., Radtke H., Schneider R., Mussler K., Scheffl er A., Schmid-Schonbein H. The mini erythrocyte aggregometer: a new apparatus for the rapid quantifi cation of the extent of erythrocyte aggregation // Biomed. Tech. (Berlin). 1982. Vol. 27, № 9. P. 209–213.

19. Steffen P., Verdier C., Wagner C. Quantification of depletion-induced adhesion of red blood cells // Phys. Rev. Let. 2013. Vol. 110. P. 018102-1–018102-5

20. Buxbaum K., Evans E., Brooks D. E. Quantitation of surface affi nities of red blood cells in dextran solutions and plasma // Biochemistry. 1982. Vol. 21. P. 3235–3239.

21. Lee K., Kinnunen M., Khokhlova M.D., Lyubin E. V., Priezzhev A.V., Meglinski I., Fedyanin A. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions // J. Biomed. Opt. 2016. Vol. 21, № 3. 035001.

22. Silva D. C., Jovino C. N., Silva C. A., Fernandes H. P., Milton Filho M., Lucena S. C., Costa A. M., Cesar C. L., Barjas-Castro M. L., Santos B. S., Fontes A. Optical tweezers as a new biomedical tool to measure zeta potential of stored red blood cells // PloS ONE. 2012. Vol. 7, № 2. e31778.

23. Fernandes P. H., Fontes A., Thomaz A., Castro V., Cesar C. L., Barjas-Castro M. L. Measuring red blood cell aggregation forces using double optical tweezers // Scand. J. Clin. Lab. Invest. 2013. Vol. 73, № 3. P. 262–264. DOI: https://doi.org/10.3109/00365513.2013.765961

24. Baskurt O. K., Boynard M., Cokeletetal G. C. New guidelines for hemorheological laboratory techniques // Clin. Hemorheol. Microcirc. 2009. Vol. 42, № 2. P. 75–97.

25. Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other // The Annals of Mathematical Statistics. 1947. Vol. 18, № 1. P. 50–60.

26. Arcuri A., Briand L. A Hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineering // Softw. Test. Verif. Reliab. 2014. Vol. 24. P. 219–250. DOI: https://doi.org/10.1002/stvr.1486

27. Maklygin A. Yu., Priezzhev A.V., Karmenyan A. V., Nikitin S. Yu., Obolenskii I. S., Lugovtsov A. E., Kisun Li. Measurement of interaction forces between red blood cells in aggregates by optical tweezers. Quantum Electronics, 2012, vol. 42, no. 6, pp. 500–504.

28. Liu Y., Cheng D. K., Sonek G. J., Berns M. W., Chapman C. F., Tromberg B. J. Evidence for localized cell heating induced by infrared optical tweezers // Biophys. J. 1985. Vol. 68. P. 2137–2144.

29. Lee K., Kinnunen M., Danilina A. V., Ustinov V. D., Shin S., Meglinski I., Priezzhev A. V. Characterization at the individual cell level and in whole blood samples of shear stress preventing red blood cells aggregation // J. Biomech. 2016. Vol. 3, iss. 7. P. 1021–1026.

30. Lee K., Priezzhev A., Shin S., Yaya F., Meglinski I. Characterization of shear stress preventing red blood cells aggregation at the individual cell level : The temperature dependence // Clin. Hemorheol. Microcirc. 2016. Vol. 64. P. 853–857.

Краткое содержание:
(downloads: 146)