Cite this article as:

Rovnyagina N. R., Tikhonova T. ., Molodenskiy D. S., Shirshin E. А. Albumin Conformational Changes During Glycation and Thermal Denaturation Processes Revealed by Fluorescence Spectroscopy and Small-angle X-ray Scattering. Izvestiya of Saratov University. New series. Series Physics, 2017, vol. 17, iss. 3, pp. 179-190. DOI: https://doi.org/10.18500/1817-3020-2017-17-3-179-190


UDC: 
53.06; 616-07; 535.3
Language: 
Russian

Albumin Conformational Changes During Glycation and Thermal Denaturation Processes Revealed by Fluorescence Spectroscopy and Small-angle X-ray Scattering

Abstract

Background and Objectives: Objects of the research in this study are solutions of bovine serum albumin (BSA) and its aggregates. Structural changes of the protein molecules in solution with pH 3 and pH 7.4 are investigated during glycation and thermal denaturation processes, when the BSA molecules in solution undergo similar intermediate states. The main aim of the research is to compare structural changes of the BSA upon its glycation and thermal denaturation, revealed by combination of optical and X-ray techniques.

Materials and Methods: The main techniques used in this study were steady-state and time-resolved fluorescence spectroscopy, as well as small angle X-ray scattering (SAXS).

Results: Position of maximum in tryptophan fluorescence spectrum and tryptophan fluorescence lifetime are sensitive to BSA conformational changes at pH 7.4 upon its incubation at 65°C. Availability of hydrophobic binding sites of NR significantly increases upon glycation. No alterations of these photophysical parameters are observed at pH 3. However, SAXS experiments reveal presence of BSA aggregates at 25°C and above. Further incubation of the solution at 65° C is not accompanied by changes in the local environment of tryptophan residues or appearance/accessibility enhancement of hydrophobic sites in the protein structure.

Conclusion: This study shows that structural changes of the BSA molecules differ for glycated and thermally denatured / aggregated proteins, though the molecules undergo similar intermediate states during these processes.

References

1. Liggins J., Furth A. Role of protein-bound carbonyl groups in the formation of advanced glucation endproducts. Biochim. Biophys. Acta, 1997, vol. 1361, pp. 123–130.

2. Suarez G., Rajaram R. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. Biol. Chem., 1989, vol. 264, pp. 3674–3679.

3. Monnier V. M., Sell D. R. Maillard Reaction-Mediated Molecular Damage to Extracellular Matrix and Other Tissue Proteins in Diabetes, Aging, and Uremia. Diabetes, 1992, vol. 21, pp. 36–41.

4. Tikhonova T. N., Shirshin E. A., Budylin G. S., Fadeev V. V., Petrova G. P. Assessment of the Europium (III) Binding Sites on Albumin Using Fluorescence Spectroscopy. J. Phys. Chem., 2014, vol. 118, pp. 6626–6633.

5. Zhdanova N. G., Shirshin E. A., Maksimov E. G., Panchishin I. M., Saletsky A. M., Fadeev V. V. Tyrosine fl uorescence probing of the surfactant-induced conformational changes of albumin. Photochem. Photobiol. Sci., 2015, vol. 14, pp. 897–908.

6. Mendez D. L., Jensen R. A. The effect of non-enzymatic glycation on the unfolding of human serum albumin. Arch. Biochem. Biophys., 2005, vol. 444, pp. 92–99.

7. Nakajou K., Watanabe H., Kragh-Hansen U., Maruyama T., Otagiri M. The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochim. Biophys. Acta, 2003, vol. 1623, pp. 88–97.

8. Obayashi H., Nakano K. Formation of Crossline as a Fluorescent Advanced Glycation End Product in vitro and in vivo. Biochem. Biophys. Res. Commun., 1996, vol. 226, pp. 37–41.

9. Odetti P., Aragno I., Rolandi R., Garibaldi S., Valentini S., Cosso L., Traverso N., Cottalasso D., Pronzato M. A., Marinari U. M. Scanning force microscopy reveals structural alterations in diabetic rat collagen fi brils: role of protein glycation. Diabetes/metabolism research and reviews, 2000, vol. 16, pp. 74–81.

10. Adamcik J., Jung J.-M., Flakowski J., De Los Rios P., Dietler G., Mezzenga R. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotech., 2010, vol. 5, pp. 423–428.

11. Ross C.A., Poirier M.A. Protein aggregation and neurodegenerative disease. Nature Med., 2004, vol. 10, pp. S10–S17.

12. Lin V. J. C., Koenig J. L. Raman studies of bovine serum albumin. Biopolymers, 1976, vol. 15, pp. 203–218.

13. Hayakawa I., Kajikara J., Morikawa K., Oda M., Fujio Y. Denaturation of bovine serum albumin (BSA) and ovalbumin by high pressure, heat and chemicals. J. Food Sci., 1992, vol. 57, pp. 288–292.

14. Brandt N. N., Chikishev A. Yu., Mankova A.A., Sakodynskaya I. K. Effect of thermal denaturation, inhibition, and cleavage of disulfi de bonds on the low-frequency Raman and FTIR spectra of chymotrypsin and albumin. J. Biomed. Optics., 2015, vol. 20, pp. 051015-1–051015-6.

15. Svetlakova A. S., Brandt N. N., Priezzhev A. V., Chikishev A. Yu. Raman microspectroscopy of nanodiamondinduced structural changes in albumin. J. Biomed. Optics, 2015, vol. 20, pp. 047004-1–047004-5.

16. Vetri V., Librizzi F., Leone M., Militello V. Thermal aggregation of bovine serum albumin at different pH: comparison with human serum albumin. Eur. Biophys J., 2006, vol. 36, pp. 717–725.

17. Shang L., Wang Y. pH-Dependent Protein Conformational Changes in Albumin : Gold Nanoparticle Bioconjugates: A Spectroscopic Study. Langmuir, 2007, vol. 23, pp. 2714–2721.

18. Wahl M. Time-Correlated Single Photon Counting. Available at: http://www.picoquant.com (accessed 14 January 2017).

19. Bhattacharya M., Jain N., Mukhopadhyay S. Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin. J. Phys. Chem., 2011, vol. 115, pp. 4195–4205.

20. Lakovich Dzh. Osnovy fl uorestsentnoi spektroskopii [Fundamentals of fl uorescence spectroscopy]. Moscow, Mir, 1986. 496 p. (in Russian).

21. Szabo A. G., Rayner D. M. Fluorescence Decay of Tryptophan Conformers in Aqueous Solution. J. Amer. Chem. Soc., 1980, vol. 102, pp. 554–563.

22. Guinier A., Fournet G. Small angle scattering of X-rays. J. Polym. Sci., 1955, vol. 1, p. 268.

23. Franke D., Svergun D. I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Cryst., 2009, vol. 42, pp. 342–346.

24. Blake C., Serpell L. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fi bril is a continuous β-sheet helix. Structure, 1996, vol. 4, pp. 989–998.

25. Wu C., Wang Z., Lei H., Zhang W., Duan Y. Dual binding modes of Congo red to amyloid protofi bril surface observed in molecular dynamics simulations. J. Amer. Chem. Soc., 2007, vol. 129, pp. 1225–1232.

26. Biancalana M., Makabe K., Koide A., Koide S. Aromatic cross-strand ladders control the structure and stability of β-rich peptide self-assembly mimics. J. Mol. Biol., 2008, vol. 383, pp. 205–213.

27. Yang J., Dunker A. K., Powers J. R., Clark S., Swanson B. G. β-Lactoglobulin molten globule induced by high pressure. J. Agric. Food. Chem., 2001, vol. 49, pp. 3236–3243.

28. Sulkowska A. Interaction of drugs with bovine and human serum albumin. Mol. Struct., 2002, vol. 614, pp. 227–232.

29. Tajalli H., Gilani A. G., Zakerhamidi M. S., Tajalli P. The photophysical properties of Nile red and Nile blue in ordered anisotropic media. Dyes and Pigments, 2008, vol. 78, pp. 15–24.

30. Okamoto A., Tainaka K., Fujiwara Y. Nile Red nucleoside: Design of a solvatofl uorochromic nucleoside as an indicator of micropolarity around DNA. J. Org. Chem., 2006, vol. 71, pp. 3592–3598.

31. Muzammil S., Kumar Y., Tayyab S. Molten globule-like state of human serum albumin at low pH. FEBS, 1999, vol. 266, pp. 26–32.

32. Leggio C., Galantini L., Pavel N. V. About the albumin structure in solution: cigar Expanded form versus heart Normal shape. Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 6741–6750.

33. Olivieri J. R., Craievich A. F. The subdomain structure of human serum albumin in solution under different pH conditions studied by small angle x-ray scattering. Eur. Biophys. J., 1995, vol. 24, pp. 77–84.

34. Krebs M. R. H., Bromley E. H. C., Donald A. M. The binding of thiofl avin-T to amyloid fi brils: localisation and implications. J. Struct. Biol., 2005, vol. 149, pp. 30–37.

35. Bouma B., Kroon-Batenburg L. M., Wu Y. P., Brünjes B., Posthuma G., Kranenburg O., Gebbink M. F. Glycation induces formation of amyloid cross-β structure in albumin. J. Biol. Chem., 2003, vol. 278, pp. 41810–41819.

36. Togashi D. M., Ryder A. G., Mc Mahon D., Dunne P., McManus J. Fluorescence Study of Bovine Serum Albumin and Ti and Sn Oxide Nanoparticles Interactions. Diagnostic Optical Spectroscopy in Biomedicine IV. Eds. D. Schweitzer, M. Fitzmaurice, Proc. of SPIE-OSA Biomedical Optics, SPIE Vol. 6628, 66281K, 2007 (11 p.).

Short text (in English): 
Full text (in Russian):