Cite this article as:

Petrov A. V., Petrov V. V., Lapin S. A., Mokrousov M. D., Gorin D. A. Acoustoelectronic System for High Intensity Focused Ultrasonic Radiation Forming Aiming Nano- and Microsized Containers Opening. Izvestiya of Saratov University. New series. Series Physics, 2018, vol. 18, iss. 3, pp. 215-227. DOI: https://doi.org/10.18500/1817-3020-2018-18-3-215-227


UDC: 
534.2:519.6
Language: 
Russian

Acoustoelectronic System for High Intensity Focused Ultrasonic Radiation Forming Aiming Nano- and Microsized Containers Opening

Abstract

Background and Objectives: The aim of the study is to develop a system intended to the controlled release of preparations that were encapsulated to micro- and nanochambers. The system also allows to implement the optoacoustical diagnostics of the object by means of short light pulse radiation with the successive processing of the appeared ultrasonic signal.

Short description: The system consists of two parts: electronic and acoustical ones. The electronic part represents a radiofrequency generator of electromagnetic radiation. The generated electromagnetic signal is modulated by short pulses with varying duration and duty cycle. The output electromagnetic power might be tuned in a wide range. The central frequency of the generated RF signal corresponds to the resonant frequency of a piezoelectric transducer and is equal to 2.5 MHz. The acoustical block of the system consists of the table with the bath at the top as the place for investigating a biological object. In the centre of the bath with immersion liquid (water) there is a hole with the dividing window between two parts of areas filled with the water. That window is transparent for the light and for the sound. The area under the window represents the tunable piston that allows to shift mechanically the focus plane of the acoustical transducer up and down so that to localize the area of high density ultrasound in a desirable area of a biological object. The piezoelectric transducer represents a segment of the spherical shape layer of piezoceramic having the silver electrodes on both surfaces. The electrodes are electrically connected to the RF generator by means of a coaxial cable. In coaxially to the spherical transducer the optical waveguide with microlens on its end is situated. That optical channel allows to irradiate the investigated area by short light pulses so that to provide the generation of an ultrasonic signal for opto-acoustical investigation.

Results: Applying the developed system the experimental opening of microcapsules of alginate beads has been demonstrated. The results of time dependence of alginate microcapsules (beads) opening versus the concentration of silver (Ag) in the beads have been presented.

Conclusion: The developed system can be used in a wide range of application aiming both the opto-acoustical investigation of objects and HIFU acting to micro- and nano chambers for releasing the encapsulated preparations.

References

1. Siwy Z., Trofi n L., Kohli P., Baker L. A., Trautmann C, Martin C. R., Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. J. Amer. Chem. Soc., 2005, vol. 127, no. 14, pp. 5000–5001.

2. Wu Z., Wu Y., He W., Lin X., Sun J., He Q. Self-Propelled Polymer-Based Multilayer Nanorockets for Transportation and Drug Release. Angew. Chemie, 2013, vol. 125, no. 27, pp. 7138–7141. DOI: https://doi.org/10.1002/ange.201301643

3. Wu Y., Wu Z., Lin X., He Q., Li J. Autonomous movement of controllable assembled Janus capsule motors. ACS Nano, 2012. vol. 6, pp. 10910–10916. DOI: https://doi.org/10.1021/nn304335x

4. Skorb E. V., Mohwald H. 25th Anniversary Article: Dynamic Interfaces for Responsive Encapsulation. Systems. Adv. Mater., 2013, vol. 25, pp. 5029–5043. DOI: https://doi.org/10.1002/adma.201302142

5. Frueh J., Gai M., Yang Z., He Q. Infl uence of polyelectrolyte multilayer coating on the degree and type of biofouling in freshwater environment. J. Nanosci. Nanotechnol., 2014, vol. 14, pp. 4341–4350.

6. Callow J. A., Callow M. E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun., 2011, vol. 2, pp. 244. DOI: https://doi.org/10.1038/ncomms1251

7. Borisova D., Akçakayıran D., Schenderlein M., Möhwald H., Shchukin D. G. Nanocontainer-based anticorrosive coatings: effect of the container size on the selfhealing performance. Adv. Funct. Mater., 2013, vol. 23, pp. 3799–3812. DOI: https://doi.org/10.1002/adfm.201203715

8. Faraji A. H., Wipf P. Nanoparticles in Cellular Drug Delivery. Bioorganic Med. Chem., 2009, vol. 17, pp. 2950–2962. DOI: https://doi.org/10.1016/j.bmc.2009.02.043

9. Lin S., Huang R., Cheng Y., Liu J., Lau B. L.T., Wiesner M. R. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Research, 2013, vol. 47, pp. 3959–3965. DOI: https://doi.org/10.1016/j.watres.2012.09.005

10. Gao H., Wen D., Sukhorukov G. B. Composite silica nanoparticle/polyelectrolyte microcapsules with reduced permeability and enhanced ultrasound sensitivity. J. Mater. Chem. B., 2015, vol. 3, pp. 1888–1897. DOI: https://doi.org/10.1039/C4TB01717J

11. Yi Q., Sukhorukov G. B., Externally triggered dual function of complex microcapsules. ACS Nano, 2013, vol. 7, pp. 8693–705. DOI: https://doi.org/10.1021/nn4029772

12. Sun Y., Zheng Y., Li P., Wang D., Niu C., Gong Y., Huang R.,Wang Z., Wang Z., Ran H. Evaluation of superparamagnetic iron oxide-polymer composite microcapsules for magnetic resonance-guided high-intensity focused ultrasound cancer surgery. BMC Cancer., 2014, vol. 14, pp. 800. DOI: https://doi.org/10.1186/1471-2407-14-800

13. Stuart M. A. C., Huck W. T. S., Genzer J., Müller M., Ober C., Stamm M., Sukhorukov G. B., Szleifer I., Tsukruk V. V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S. Emerging applications of stimuliresponsive polymer materials. Nat. Mater., 2010, vol. 9, pp. 101–113. DOI: https://doi.org/10.1038/nmat2614

14. Gao H., Wen D., Tarakina N. V., Liang J., Bushby A. J., Sukhorukov G. B. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules. Nanoscale, 2016, vol. 8, iss. 9, pp. 5170–5180. DOI: https://doi.org/10.1039/c5nr06666b

15. Gorin D. A., Shchukin D. G., Mikhailov A. I., Kohler K., Sergeev S. A., Portnov S. A., Taranov I. V., Kislov V. V., Sukhorukov G. B. Effect of Microwave Radiation on Polymer Microcapsules Containing Inorganic Nanoparticles. Technical Physics Letters, 2006, vol. 32, no. 1, pp. 70–72. DOI: https://doi.org/10.1134/S1063785006010238

16. Ma M., Xu H. X., Chen H. R., Jia X. Q., Zhang K., Wang Q., Zheng S. G., Wu R., Yao M. H., Cai X. J., Li F. Q., Shi J. L. A Drug Perfl uorocarbon Nanoemulsion with an Ultrathin Silica Coating for the Synergistic Effect of Chemotherapy and Ablation by High Intensity Focused Ultrasound. Adv. Mater., 2014, vol. 26, no. 43, pp. 7378–7385. DOI: https://doi.org/10.1002/adma.201104033

17. Wang X., Chen H., Chen Y., Ma M., Zhang K., Li F., Zheng Y., Zeng D., Wang Q., Shi J. Perfl uorohexane Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Effi cient High Intensity Focused Ultrasound (HIFU). Adv. Mater., 2012, vol. 24, no. 6, pp. 785–791. DOI: https://doi.org/10.1002/adma.201104033

18. Bulychev N. A., Kisterev E. V., Ioni Yu. V., Rudnev A. V. Sintez nanomaterialov s kontroliruemymi svoistvami s pomoshch’iu ul’trazvuka [Synthesis of nanomaterials with controlled properties via ultrasound]. Nanotekhnologicheskoe obshchestvo Rossii (Nanotechnological Society of Russia). Available at: http://www.ntsr.info/science/library/2946.htm (accessed 22 June 2018) (in Russian).

19. Nikolaev A. L., Gopin A. V., Konopatskaia I. I., Mironov M. A., Piatakov P. A., Andronova N. V., Treshchalina E. M., Dezhkunov N. V. Tverdofaznaia sonosensibilizatsiia v sonodinamicheskoi terapii onkologicheskikh zabolevanii [Solid-phase sonosensitization in sonodynamic therapy of oncological diseases]. MGU. Uchenye Zapiski Fizicheskogo Fakul’teta [Moscow State University. Scientists Notes of the Faculty of Physics], 2014, vol. 5, no. 145344, pp. 1–13 (in Russian).

20. Khmelev V. N., Shalunov A. V., Khmelev M. V. Sozdanie i primenenie spetsializirovannogo ul’trazvukovogo Oborudovaniia Dlia Polucheniia Konstruktsionnykh Nanomaterialov [Creation and application of specialized ultrasonic equipment for obtaining structural nanomaterials]. In: Second international forum on nanotechnology: abstracts. Moscow, State Corporation “Russian Corporation of nanotechnologies”, 2009, pp. 412–423. Available at: http://u-sonic.ru/downloads/2009/nano.pdf (accessed 22 June 2018) (in Russian).

21. Zhou D., Li C., He M., Ma M., Li P., Gong Y., Ran H., Wang Z., Wang Z., Zheng Y., Sun Y. Folate-targeted perfl uorohexane nanoparticles carrying bismuth sulfi de for use in US/CT dual-mode imaging and synergistic high-intensity focused ultrasound ablation of cervical cancer. J. Mater., Chem. B., 2016, vol. 4, iss. 23, pp. 4164–4181. DOI: https://doi.org/10.1039/C6TB00261G

22. Zhang H., Xia H., Wang J., Li Y., High Intensity Focused Ultrasound Responsive Release Behavior of PLA-b-PEG Copolymer Micelles. J Control Release, 2009, vol. 139, pp. 31–39. DOI: https://doi.org/10.1016/j.jconrel.2009.05.037

23. De Smet M., Heijman E., Langereis S., Hijnen N. M., Grull H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J. Control. Release, 2011, vol. 150, pp. 102–110. DOI: https://doi.org/10.1016/j.jconrel.2010.10.036

24. Ordeig O., Chin S. Y., Kim S., Chitnis P. V., Sia S. K. An implantable compound-releasing capsule triggered on demand by ultrasound. Sci. Rep., 2016, vol. 6, pp. 22803. DOI: https://doi.org/10.1038/srep22803

25. Arora J. S., Murad H. Y., Ashe S., Halliburton G., Yu H., He J., John V. T., Khismatullin D. B. Ablative Focused Ultrasound Synergistically Enhances Thermally Triggered Chemotherapy for Prostate Cancer in vivo. Mol. Pharm., 2016, vol. 13, pp. 3080–3090. DOI: https://doi.org/10.1021/acs.molpharmaceut.6b00216

26. Kolesnikova T. A., Gorin D. A., Fernandes P., Kessel S., Khomutov G. B., Fery A., Shchukin D. G., Möhwald H. Nanocomposite microcontainers with high ultrasound sensitivity. Advanced Functional Materials, 2010, vol. 20, pp. 1189–1195. DOI: https://doi.org/10.1002/adfm.200902233

27. Zharov V. P., Letokhov V. S. Lazernaia optoakusticheskaia spektroskopiia [Laser optoacoustic spectroscopy]. Moscow, Nauka Publ., 1984. 320 p. (in Russian).

28. Liamshev L. M. Lazernoe termo-opticheskoe vozbuzhdenie zvuka [Laser thermo-optical excitation of sound]. Moscow, Nauka Publ., 1989. 237 p. (in Russian).

29. Gusev V. E., Karabutov A. A. Lazernaia optoakustika [Laser optoacoustics]. Moscow, Nauka Publ., 1991. 304 p. (in Russian).

30. Khill K. Primenenie ul’trazvuka v meditsine: fi zicheskie osnovy [The application of ultrasound in medicine: the physical basis]. Moscow, Mir Publ., 1989. 568 p. (in Russian).

31. Karnishin V. V. Linzovaia akusticheskaia mikroskopiia – novyi nerazrushaiushchii metod kontrolia materialov i izdelii elektronnoi tekhniki [Lens acoustic microscopy – a new non-destructive method for monitoring materials and electronic products]. Zarubezhnaia elektronnaia tekhnika [Foreign electronic equipment], 1987, no. 7, pp. 65–79 (in Russian).

32. Bobkova S., Gavrilov L., Khokhlova V., Shaw A., Hand J. Focusing of high intensity ultrasound through the rib cage using therapeutic random phased array. Ultrasound Med. Biol., 2010, vol. 36, no. 6, pp. 888−906. DOI: https://doi.org/10.1016/j.ultrasmedbio.2010.03.007

33. Beili M. R., Khokhlova V. A., Sapozhnikov O. A., Kargl S. G., Kram L. A. Fizicheskie mekhanizmy vozdeistviia terapevticheskogo ul’trazvuka na biologicheskuiu tkan’ [Physical mechanisms of the effect of therapeutic ultrasound on biological tissue]. Akusticheskii zhurnal [Acoustic journal], 2003, vol. 49, no. 4, pp. 437–464 (in Russian).

34. Gavrilov L. R. Evoliutsiia moshchnykh fokusiruiushchikh sistem dlia primeneniia v razlichnykh oblastiakh meditsiny [Evolution of powerful focusing systems for application in various fi elds of medicine]. Akusticheskii zhurnal [Acoustic journal], 2010, vol. 56, no. 6, pp. 844−861 (in Russian).

35. Pat. 2603819, RU. MPK G01N 29/00 (20066/01). Optoacoustical objective / Petrov A. V., Korolovich V. F., Gorin D. A., Petrov V. V., Sukhorukov G. B.; applicant and panentee, Saratov State University. № 2015111328/28; applied 30.03.2015; published 27.11.2016, Bulletin no. 33.

36. Lin S., Huang R., Cheng Y., Liu J., Lau B. L. T., Wiesner M. R. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Research, 2013, vol. 47, iss. 12, pp. 3959–3965. DOI: https://doi.org/10.1016/j.watres.2012.09.005

37. Mazda F. F. Electronic Instruments and Measurement Techniques. Cambridge, Cambridge University Press, 1987. 320 p.

38. Harrison G. H., Balcer-Kubiczek E. K., Eddy H. A. Potentiation of chemotherapy by low-level ultrasound. Int. J. Radiat. Biol., 1991, vol. 59, pp. 1453–1466.

39. Taniyama Y., Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K., Nakamura T., Ogihara T., Kaneda Y., Morishita R. Development of safe and effi cient novel nonviral gene transfer using ultrasound: enhancement of transfection effi ciency of naked plasmid DNA in skeletal muscle. Gene Therapy, 2002, vol. 9, pp. 372–380.

40. Yuh E. L., Shulman S. G., Mehta S. A., Xie J., Chen L., Frenkel V., Bednarski M. D., King C. P. Li. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: Study in a murine model. Radiology, 2005, vol. 234, no. 2, pp. 431–437. DOI: https://doi.org/10.1148/radiol.2342030889

Short text (in English): 
Full text (in Russian):