Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Сагайдачная Е. А., Янина И. Ю., Кочубей В. И. Перспективы применения апконверсионных частиц NaYF4:Er,Yb для фототерапии // Известия Саратовского университета. Новая серия. Серия: Физика. 2018. Т. 18, вып. 4. С. 253-274. DOI: 10.18500/1817-3020-2018-18-4-253-274

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 3262)
Язык публикации: 
русский
УДК: 
53.06:548.5:54.057

Перспективы применения апконверсионных частиц NaYF4:Er,Yb для фототерапии

Авторы: 
Сагайдачная Елена Александровна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Янина Ирина Юрьевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Кочубей Вячеслав Иванович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

В работе описан принцип действия функционализированных апконверсионных частиц, позволяющих проводить фотодинамическую и фототермическую терапии опухоли с одновременным контролем температуры и возможностью визуализировать область терапии. Апконверсионные частицы являются перспективным материалом для комплексной фототерапии с одновременным контролем нагрева биоткани, поскольку могут позволить увеличить глубину терапевтического воздействия за счет большой глубины проникновения необходимого возбуждающего излучения. Рассмотрены особенности гидротермального метода синтеза апконверсионных частиц NaYF4:Er,Yb, представляющегося наиболее перспективным. Гидротермальный метод позволяет варьировать параметры синтезируемых частиц путем регулировки температуры и времени синтеза, концентрации пассивирующего и фторирующего агентов. При этом могут быть получены частицы различной морфологии от стержней до пластинок различных размеров (10 нм – 5 мкм). Последующая функционализация частиц фотосенсибилизатором обеспечивает фотодинамическое действие. Приведен обзор результатов исследований in vitro на маркерных веществах и клетках, подтверждающих эффективность генерации токсических форм кислорода в присутствии функционализированных апконверсионных частиц и их цитотоксического действия. Показано, что использование таких частиц позволяет увеличить глубину действия терапии согласно исследованиям in vivo на мышах, а значит, увеличить ее эффективность и расширить границы применимости. Описанные процессы могут дать основания для развития методов фотодинамической терапии, направленных на расширение области применения и функциональных возможностей терапии.

Список источников: 

1. Рак : информационный бюллетень / Всемирная организация здравоохранения. URL: http://www.who.int/mediacentre/factsheets/fs297/ru/ (дата обращения 7.03.2018).

2. Chang H., Xie J., Zhao B., Liu B., Xu S., Ren N., Xie X., Huang L., Huang W. Rare earth ion-doped upconversion nanocrystals : synthesis and surface modifi cation // Nanomaterials. 2015. Vol. 5, № 1. P. 1–25. DOI: https://doi.org/10.3390/nano5010001

3. Qian H. S., Guo H. C., Ho P. C., Mahendran R., Zhang Y. Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy // Small. 2009. Vol. 5, № 20. P. 2285–90. DOI: https://doi.org/10.1002/smll.200900692

4. Abdel-Kader M. H. Photodynamic therapy. Berlin ; Heidelberg : Springer-Verlag, 2016. 317 p. DOI: https://doi.org/10.1007/978-3-642-39629-8

5. Филоненко Е. В. Флюоресцентная диагностика и фотодинамическая терапия – обоснование применения и возможности в онкологии // Фотодинамическая терапия и фотодиагостика. 2014. № 1. С. 3–7.

6. DeRosa M. C., Crutchley R. J. Photosensitized singlet oxygen and its applications // Coordination Chemistry Reviews. 2002. Vol. 233–234. P. 351–371.

7. Obaid G., Russell D. A. Nanoparticles for PDT // Handbook of Photomedicine / eds. M. R. Hamblin, Y.-Y. Huang. Boca Raton, FL: Taylor & Francis, CRC Press, 2013. P. 367–378.

8. Wang C., Cheng L., Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics // Theranostics. 2013. Vol. 3, № 5. P. 317. DOI: https://doi.org/10.7150/thno.5284

9. Wang C., Tao H., Cheng L., Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles // Biomaterials. 2011. Vol. 32, № 26. P. 6145–6154. DOI: https://doi.org/10.1016/j.biomaterials.2011.05.007

10. Khaydukov E. V., Mironova K. E., Semchishen V. A., Generalova A. N., Nechaev A. V., Khochenkov D. A., Stepanova E. V., Lebedev O. I., Zvyagin A. V., Deyev S. M., Panchenko V. Y. Ribofl avin photoactivation by upconversion nanoparticles for cancer treatment // Scientifi c reports. 2016. Vol. 6. P. 35103. DOI: https://doi.org/10.1038/srep35103

11. Zhang F. Photon upconversion nanomaterials. Springer, 2016. 428 p. DOI: https://doi.org/10.1007/978-3-662-45597-5

12. Chen G., Qiu H., Prasad P. N., Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics // Chemical reviews. 2014. Vol. 114, № 10. P. 5161–5214. DOI: https://doi.org/10.1021/cr400425h

13. Feng W., Zhu X., Li F. Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications // NPG Asia Materials. 2013. Vol. 5, № 12. P. e75. DOI: https://doi.org/10.1038/am.2013.63

14. Zhou J., Liu Z., Li F. Upconversion nanophosphors for small-animal imaging // Chemical Society Reviews. 2012. Vol. 41, № 3. P. 1323–1349. DOI: https://doi.org/10.1039/c1cs15187h

15. Du P., Luo L., Yu J. S. Facile synthesis of Er3+/Yb3+- codoped NaYF4 nanoparticles: a promising multifunctional upconverting luminescent material for versatile applications // RSC Advances. 2016. Vol. 6, № 97. P. 94539–94546. DOI: https://doi.org/10.1039/C6RA22349D

16. Chatterjee D. K., Gnanasammandhan M. K., Zhang Y. Small upconverting fl uorescent nanoparticles for biomedical applications // Small. 2010. Vol. 6, № 24. P. 2781–2795. DOI: https://doi.org/10.1002/smll.201000418

17. Tong L., Li X., Hua R., Li X., Zheng H., Sun J., Zhang J., Cheng L., Chen B. Comparative study on upconversion luminescence and temperature sensing of α-and β-NaYF4:Yb3+/Er3+ nano-/micro-crystals derived from a microwave-assisted hydrothermal route // Journal of Luminescence. 2015. Vol. 167. P. 386–390. DOI: https://doi.org/10.1016/j.jlumin.2015.07.017

18. Gainer C. F., Romanowski M. A review of synthetic methods for the production of upconverting lanthanide nanoparticles // Journal of Innovative Optical Health Sciences. 2014. Vol. 7, № 2. P. 1330007. DOI: https://doi.org/10.1142/S1793545813300073

19. Chen J., Zhao J. X. Upconversion nanomaterials : synthesis, mechanism, and applications in sensing // Sensors. 2012. Vol. 12, № 3. P. 2414-2435. DOI: https://doi.org/10.3390/s120302414

20. Глушкова А. В., Радилов А. С., Рембовский В. Р. Нанотехнологии и нанотоксикология – взгляд на проблему // Токсикологический вестн. 2007. Т. 6. С. 4–8.

21. Zhao J., Zhao J., Sun Y., Kong X., Tian L., Wang Y., Tu L., Zhao J., Zhang H. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+,Er3+ nano-crystals/submicroplates at low doping level // The Journal of Physical Chemistry B. 2008. Vol. 112, № 49. P. 15666–15672. DOI: https://doi.org/10.1021/jp805567k

22. Li C., Quan Z., Yang J., Yang P., Lin J. Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties // Inorganic chemistry. 2007. Vol. 46, № 16. P. 6329–6337. DOI: https://doi.org/10.1021/ic070335i

23. Zeng S., Ren G., Xu C., Yang Q. High uniformity and monodispersity of sodium rare-earth fl uoride nanocrystals : controllable synthesis, shape evolution and optical properties // CrystEngComm. 2011. Vol. 13, № 5. P. 1384–1390. DOI: https://doi.org/10.1039/c0ce00325e

24. Li C., Yang J., Quan Z., Yang P., Kong D., Lin J. Different microstructures of β-NaYF4 fabricated by hydrothermal process : effects of pH values and fl uoride sources // Chemistry of Materials. 2007. Vol. 19, № 20. P. 4933–4942. DOI: https://doi.org/10.1021/cm071668g

25. Shang Y., Hao S., Liu J., Tan M., Wang N., Yang C., Chen G. Synthesis of upconversion β-NaYF4:Nd3+/Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase // Nanomaterials. 2015. Vol. 5, № 1. P. 218–232. DOI: https://doi.org/10.3390/nano5010218

26. Ding M., Yin S., Ni Y., Lu C., Chen D., Zhong J., Ji Z., Xu Z. Controlled synthesis of β-NaYF4:Yb3+/Er3+ microstructures with morphology-and size-dependent upconversion luminescence // Ceramics International. 2015. Vol. 41, № 6. P. 7411–7420. DOI: https://doi.org/10.1016/j.ceramint.2015.02.054

27. Zhang X., Yu H., Guo L., Jin J., Li Q., Guo Y., Fu Y., Shi Y., Zhao L. Comprehensive model and investigation of F-ions-induced cubic-to-hexagonal phase transformation in NaYF4 // Journal of Alloys and Compounds. 2017. Vol. 728. P. 1254–1259. DOI: https://doi.org/10.1016/j.jallcom.2017.09.105

28. Assaaoudi H., Shan G. B., Dyck N., Demopoulos G. P. Annealing-induced ultra-effi cient NIR-to-VIS upconversion of nano-/micro-scale α and β NaYF4:Er3+,Yb3+ crystals // CrystEngComm. 2013. Vol. 15, № 23. P. 4739–4746. DOI: https://doi.org/10.1039/c3ce40362a

29. Wang Y., Cai R., Liu Z. Controlled synthesis of NaYF4:Yb, Er nanocrystals with upconversion fl uorescence via a facile hydrothermal procedure in aqueous solution // CrystEngComm. 2011. Vol. 13, № 6. P. 1772–1774. DOI: https://doi.org/10.1039/c0ce00708k

30. Schietinger S., Menezes L. D. S., Lauritzen B., Benson O. Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals // Nano letters. 2009. Vol. 9, № 6. P. 2477–2481. DOI: https://doi.org/10.1021/nl901253t

31. Wang F., Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals // Chemical Society Reviews. 2009. Vol. 38, № 4. P. 976–989. DOI: https://doi.org/10.1039/b809132n

32. Sun Y., Chen Y., Tian L., Yu Y., Kong X., Zhao J., Zhang H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals // Nanotechnology. 2007. Vol. 18, № 27. P. 275609. DOI: https://doi.org/10.1088/0957-4484/18/27/275609

33. Mai H. X., Zhang Y. W., Sun L. D., Yan C. H. Sizeand phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy // The Journal of Physical Chemistry C. 2007. Vol. 111, № 37. P. 13730–13739. DOI: https://doi.org/10.1021/jp073919e

34. Yu W., Wang X., Chen N., Du G., Gui W. A strategy to prepare highly redispersible and strongly luminescent α-NaYF4:Eu3+ hybrid nanostructures with multi-channel excitation // CrystEngComm. 2014. Vol. 16, № 15. P. 3214–3221. DOI: https://doi.org/10.1039/c3ce42334d

35. Qian H. S., Zhang Y. Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fl uorescence // Langmuir. 2008. Vol. 24, № 21. P. 12123–12125. DOI: https://doi.org/10.1021/la802343f

36. Yang T., Sun Y., Liu Q., Feng W., Yang P., Li F. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species // Biomaterials. 2012. Vol. 33, № 14. P. 3733–3742. DOI: https://doi.org/10.1016/j.biomaterials.2012.01.063

37. Liu Q., Sun Y., Yang T., Feng W., Li C., Li F. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo // Journal of the American Chemical Society. 2011. Vol. 133, № 43. P. 17122–17125. DOI: https://doi.org/10.1021/ja207078s

38. Vetrone F., Naccache R., Mahalingam V., Morgan C. G., Capobianco J. A. The active-core/active-shell approach : a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles // Adv. Funct. Mater. 2009. Vol. 19. P. 2924–2929. DOI: https://doi.org/10.1002/adfm.200900234

39. Sagaydachnaya E. A., Kochubey V. I., Konyukhova J. G. Infl uence of annealing temperature on the upconversion luminescence properties of NaYF4:Er,Yb@SiO2 particles // Journal of Physics : Conference Series. 2017. Vol. 917, № 3. P. 032006. DOI: https://doi.org/10.1088/1742-6596/917/3/032006

40. Dyck N. C., van Veggel F. C., Demopoulos G. P. Sizedependent maximization of upconversion effi ciency of citrate-stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing // ACS Appl. Mater. Interfaces. 2013. Vol. 5, № 22. P. 11661–11667. DOI: https://doi.org/10.1021/am403100t

41. Klier D. T., Kumke M. U. Analysing the effect of the crystal structure on upconversion luminescence in Yb3+,Er3+- co-doped NaYF4 nanomaterials // Journal of Materials Chemistry C. 2015. Vol. 3, № 42. P. 11228–11238. DOI: https://doi.org/10.1039/c5tc02218e

42. Wei Y., Lu F., Zhang X., Chen D. Synthesis and characterization of effi cient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter // Journal of alloys and compounds. 2007. Vol. 427, № 1–2. P. 333–340. DOI: https://doi.org/10.1016/j.jallcom.2006.03.014

43. Lee J. S., Kim Y. J. The effects of preparation conditions on the structural and up-conversion properties of NaYF4:Yb3+,Er3+ nano powders // Optical Materials. 2011. Vol. 33, № 7. P. 1111–1115. DOI: https://doi.org/10.1016/j.optmat.2010.10.011

44. Monteiro-Riviere N. A., Tran C. L. Nanotoxicology : progress toward nanomedicine. Boca Ration, FL : CRC Press, 2014. 362 p.

45. Gnach A., Lipinski T., Bednarkiewicz A., Rybka J., Capobianco J. A. Upconverting nanoparticles: assessing the toxicity // Chemical Society Reviews. 2015. Vol. 44, № 6. P. 1561–1584. DOI: https://doi.org/10.1039/c4cs00177j

46. Maldiney T., Richard C., Seguin J., Wattier N., Bessodes M., Scherman D. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice // ACS Nano. 2011. Vol. 5, № 2. P. 854–-862

47. Cheng L., Yang K., Shao M., Lu X., Liu Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice // Nanomedicine. 2011. Vol. 6, № 8. P. 1327–1340. DOI: https://doi.org/10.2217/nnm.11.56

48. Wang F., Banerjee D., Liu Y., Chen X., Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy // Analyst. 2010. Vol. 135, № 8. P. 1839–1854. DOI: https://doi.org/10.1039/c0an00144a

49. Punjabi A., Wu X., Tokatli-Apollon A., El-Rifai M., Lee H., Zhang Y., Wang C., Liu Z., Chan E. M., Duan C., Han G. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy // ACS Nano. 2014. Vol. 8, № 10. P. 10621–10630. DOI: https://doi.org/10.1021/nn505051d

50. Zou H., Jin F., Song X., Xing J. Singlet oxygen generation of photosensitizers effectively activated by Nd3+-doped upconversion nanoparticles of luminescence intensity enhancing with shell thickness decreasing // Applied Surface Science. 2017. Vol. 400. P. 81–89. DOI: https://doi.org/10.1016/j.apsusc.2016.12.174

51. Han R., Shi J., Liu Z., Wang H., Wang Y. Fabrication of mesoporous silica-coated upconverting nanoparticles with ultrafast photosensitizer loading and 808 nm NIR light triggering capability for photodynamic therapy // Chemistry Asian Journal. 2017. Vol. 12. P. 2197–2201. DOI: https://doi.org/10.1002/asia.201700836

52. Guo H., Qian H., Idris N. M., Zhang Y. Singlet oxygeninduced apoptosis of cancer cells using upconversion fl uorescent nanoparticles as a carrier of photosensitizer // Nanomedicine : Nanotechnology, Biology and Medicine. 2010. Vol. 6, № 3. P. 486–495. DOI: https://doi.org/10.1016/j.nano.2009.11.004

53. Chatterjee D. K., Yong Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells // Nanomedicine. 2008. Vol. 3, № 1. P. 73–82. DOI: https://doi.org/10.2217/17435889.3.1.73

54. Chen D., Tao R., Tao K., Chen B., Choi S. K., Tian Q., Xu Y., Zhou G., Sun K. Effi cacy dependence of photodynamic therapy mediated by upconversion nanoparticles : subcellular positioning and irradiation productivity // Small. 2017. Vol. 13, № 13. P. 1602053. DOI: https://doi.org/10.1002/smll.201602053

55. Yang J., Deng Y., Wu Q., Zhou J., Bao H., Li Q., Zhang F., Li F., Tu B., Zhao D. Mesoporous silica encapsulating upconversion luminescence rare-earth fl uoride nanorods for secondary excitation // Langmuir. 2010. Vol. 26, № 11. P. 8850–8856. DOI: https://doi.org/10.1021/la904596x

56. Zhou A., Wei Y., Wu B., Chen Q., Xing D. Pyropheophorbide A and c(RGDyK) Comodifi ed Chitosan-Wrapped Upconversion Nanoparticle for Targeted Near-Infrared Photodynamic Therapy // Mol. Pharmaceutics. 2012. Vol. 9. P. 1580–1589. DOI: https://doi.org/10.1021/mp200590y

57. Chen X., Zhao Z., Jiang M., Que D., Shi S., Zheng N. Preparation and photodynamic therapy application of NaYF4:Yb,Tm–NaYF4:Yb,Er multifunctional upconverting nanoparticles // New journal of chemistry. 2013. Vol. 37, № 6. P. 1782–1788. DOI: https://doi.org/10.1039/c3nj00065f

58. Lin M., Zhao Y., Wang S., Liu M., Duan Z., Chen Y., Li F., Xu F., Lu T. Recent advances in synthesis and surface modifi cation of lanthanide-doped upconversion nanoparticles for biomedical applications // Biotechnology advances. 2012. Vol. 30, № 6. P. 1551–1561. DOI: https://doi.org/10.1016/j.biotechadv.2012.04.009

59. Tian G., Gu Z. J., Zhou L. J., Yin W. Y., Liu X. X., Yan L., Jin S., Ren W. L., Xing G. M., Li S. J., Zhao Y. L. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upcon version Nanoparticles for in vivo Imaging and Drug Delivery // Adv. Mater. 2012. Vol. 24. P. 1226–1231. DOI: https://doi.org/10.1002/adma.201104741

60. Wang H., Liu Z., Wang S., Dong C., Gong X., Zhao P., Chang J. MC540 and Upconverting Nanocrystal Coloaded Polymeric Liposome for Near-Infrared Light-Triggered Photodynamic Therapy and Cell Fluorescent Imaging // ACS Appl. Mater. Interfaces. 2014. Vol. 6. P. 3219–3225. DOI: https://doi.org/10.1021/am500097f

61. Shen J., Li Z. Q., Chen Y. R., Chen X. H., Chen Y. W., Sun Z., Huang S. M. Influence of SiO2 layer thickness on plasmon enhanced upconversion in hybrid Ag/SiO2/NaYF4:Yb,Er,Gd structures // Applied Surface Science. 2013. Vol. 270. P. 712–717. DOI: https://doi.org/10.1016/j.apsusc.2013.01.133

62. Ding Y., Zhang X., Gao H., Xu S., Wei C., Zhao Y. Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles // Journal of Luminescence. 2014. Vol. 147. P. 72–76. DOI: https://doi.org/10.1016/j.jlumin.2013.10.062

63. Joshi P., Ahmadov T. O., Wang P., Zhang P. Singlet oxygen generation under NIR light and visible light excitations of photosensitizers on upconversion nanoparticle surface // RSC Advances. 2015. Vol. 5, № 83. P. 67892–67895. DOI: https://doi.org/10.1039/C5RA13125A

64. Wang X., Liu K., Yang G., Cheng L., He L., Liu Y., Li Y., Guo L., Liu Z. Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing // Nanoscale. 2014. Vol. 6. P. 9198. DOI: https://doi.org/10.1039/C4NR02495H

65. Гребеник Е. А., Генералова А. Н., Нечаев А. В., Хайдуков Е. В., Миронова К. Е., Стремовский О. А., Лебеденко Е. Н., Звягин А. В., Деев С. М. Специфическая визуализация опухолевых клеток с помощью антистоксовых нанофосфóров // Acta Naturae (русскоязычная версия). 2014. T. 6, № 4 (23). C. 51–57.

66. Wang D., Xue B., Kong X., Tu L., Liu X., Zhang Y., Chang Y., Luo Y., Zhao H., Zhang H. 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fl uorescence imaging // Nanoscale. 2015. Vol. 7. P. 190197. DOI: https://doi.org/10.1039/C4NR04953E

67. Xia L., Kong X., Liu X., Tu L., Zhang Y., Chang Y., Liu K., Shen D., Zhao H., Zhang H. An upconversion nanoparticle – Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy // Biomaterials. 2014. Vol. 35. P. 4146–4156. DOI: https://doi.org/10.1016/j.biomaterials.2014.01.068

68. Zhang L., Zeng L., Pan Y., Luo S., Ren W., Gong A., Ma X., Liang H., Lu G., Wu A. Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and nearinfrared-responsive photodynamic therapy in cancers // Biomaterials. 2015. Vol. 44. P. 82–90. DOI: https://doi.org/10.1016/j.biomaterials.2014.12.040

69. Zeng L. Y., Pan Y. W., Tian Y., Wang X., Ren W. Z., Wang S. J., Lu G. M., Wu A. G. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers // Biomaterials. 2015. Vol. 57. P. 93–106. DOI: https://doi.org/10.1016/j.biomaterials.2015.04.006

70. Lv R., Zhong C., Li R., Yang P., He F., Gai S., Hou Z., Yang G., Lin J. A Multifunctional Anticancer Platform for Multimodal Imaging and Visible Light Driven Photodynamic/Photothermal Therapy // Chem. Mater. 2015. Vol. 27. P. 1751–69. DOI: https://doi.org/10.1021/cm504566f

71. Stella B., Arpicco S., Peracchia M. T., Desmaële D., Hoebeke J., Renoir M., D’Angelo J., Cattel L., Couvreur P. Design of folic acid-conjugated nanoparticles for drug targeting // Journal of pharmaceutical sciences. 2000. Vol. 89, № 11. P. 1452–1464.

72. Sun C., Sze R., Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI // Journal of Biomedical Materials Research Part A. 2006. Vol. 78, № 3. P. 550–557. DOI: https://doi.org/10.1002/jbm.a.30781

73. Fan W., Shen B., Bu W., Chen F., He Q., Zhao K., Zhang S., Zhou L., Peng W., Xiao Q., Ni D., Liu J., Shi J. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging // Biomaterials. 2014. Vol. 35. P. 8992–9002. DOI: https://doi.org/10.1016/j.biomaterials.2014.07.024

74. Park Y. I., Kim H. M., Kim J. H., Moon K. C., Yoo B., Lee K. T., Lee N., Choi Y., Park W., Ling D., Na K., Moon W. K., Choi S. H., Park H. S., Yoon S.-Y., Suh Y. D., Lee S. H., Hyeon T. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy // Adv. Mater. 2012. Vol. 24. P. 5755–5791. DOI: https://doi.org/10.1002/adma.201202433

75. Wang C., Cheng L., Liu Y., Wang X., Ma X., Deng Z., Li Y., Liu Z. Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light // Adv. Funct. Mater. 2013. Vol. 23. P. 3077–3086. DOI: https://doi.org/10.1002/adfm.201202992

76. Cui S., Chen H., Zhu H., Tian J., Chi X., Qian Z., Achilefu S., Gu Y. Amphiphilic chitosan modifi ed upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light // J. Mater. Chem. 2012. Vol. 22. P. 4861–4873. DOI: https://doi.org/10.1039/C2JM16112E

Краткое содержание:
(загрузок: 188)