Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Тучина Е. С., Корченова М. В., Закоян А. А., Тучин В. В. Влияние штаммовых различий на устойчивость Staphylococcus aureus к фотодинамическому воздействию с использованием мезо-замещенных катионных порфиринов // Известия Саратовского университета. Новая серия. Серия: Физика. 2024. Т. 24, вып. 3. С. 216-227. DOI: 10.18500/1817-3020-2024-24-3-216-227, EDN: IELOFE

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
30.08.2024
Полный текст в формате PDF(Ru):
(загрузок: 71)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
577.344.3:57.033
EDN: 
IELOFE

Влияние штаммовых различий на устойчивость Staphylococcus aureus к фотодинамическому воздействию с использованием мезо-замещенных катионных порфиринов

Авторы: 
Тучина Елена Святославна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Корченова Мария Владимировна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Закоян Анна Артуровна, Научно-производственный центр «Армбиотехнология» НАН РА
Тучин Валерий Викторович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

В настоящей работе с целью количественного определения межштаммовых различий в реакциях бактериальных клеток на фотодинамическое воздействие было проведено исследование эффективности пиридилпорфириновых соединений в сочетании с светодиодным излучением в отношении трех штаммов Staphylococcus aureus.

Наибольшую чувствительность к действию излучения с длиной волны 405 нм, полушириной полосы 30 нм и плотностью мощности 80 мВт/см2 продемонстрировали клетки клинического метициллин-резистентногоштамма S. aureus 11, активированные пиридилпорфиринами. Показано, что при использовании фотосенсибилизаторов в концентрациях 0.01–0.03 мг/мл после 30 мин облучения снижение численности клеток данного штамма происходит на величину 4.8 lgКОЕ/мл. Установлено, что активность каталазы в клетках метициллинрезистентного штамма S. aureus 11 на 17% ниже по сравнению с активностью каталазы в клетках стандартного штамма S. aureus 209 Р. Это косвенно свидетельствует о большей чувствительности штамма S. aureus 11 к активным формам кислорода, образующимся в ходе антимикробного фотодинамического воздействия.

Полученные сведения имеют важное прикладное значение, поскольку показывают, что чувствительность к фотодинамическому воздействию клеток разных штаммов золотистого стафилококка различается в пределах 1.7–2.3 lgКОЕ/мл.

Благодарности: 
Авторы выражают признательность Национальной Академии Наук Республики Армения за предоставленную помощь в рамках «Программы поддержки молодых ученых» (проект № 22-YSIP-010), а также ведущему сотруднику лаборатории биоинженерии Института биохимии им. Г. Х. Буниатяна НАН Армении (Ереван, Армения) Г. В. Гюльханданяну за предоставленные образцы пиридилпорфиринов; сотрудникам кафедры микробиологии, вирусологии и иммунологии СГМУ им. В. И. Разумовского (Саратов, Россия) за предоставленные штаммы микроорганизмов; сотрудникам кафедры биохимии и биофизики СГУ им. Н. Г. Чернышевского (Саратов, Россия) за содействие при проведении экспериментов; сотруднику кафедры оптики и биофотоники СГУ им Н. Г. Чернышевского (Саратов, Россия) Л. Е. Долотову за помощь при проведении измерений и настройке оборудования. Источники финансирования. Работа выполнена при финансовой поддержке Минобрнауки России (проект № 13.2251.21.0009 от 29.09.2021 (договор № 075-15-2021-942)).
Список источников: 
  1. Baptista M. D., Cadet J., Di Mascio P., Ghogare A. A., Greer A., Hamblin M. R., Lorente C., Núñez S. C., Ribeiro M. S., Thomas A. H., Vignoni M., Yoshimura T. M. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology, 2017, vol. 93, no. 4, pp. 912–919. https://doi.org/10.1111/php.12716
  2. Youf R., Müller M., Balasini A., Thétiot F., Müller M., Hascoët A., Jonas U., Schönherr H., Lemercier G., Montier T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics, 2021, vol. 13, no. 12, article no. 1995. https://doi.org/10.3390/pharmaceutics13121995
  3. Feng Y., Tonon C. C., Ashraf S., Hasan T. Photodynamic and Antibiotic Therapy in Combination against Bacterial Infections: Efficacy, Determinants, Mechanisms, and Future Perspectives. Adv. Drug Deliv. Rev., 2021, vol. 177, article no. 113941. https://doi.org/10.1016/j.addr.2021.113941
  4. Hu X., Huang Y.-Y., Wang Y., Wang X., Hamblin M. R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Frontiers in Microbiology, 2018, vol. 9, pp. 1–24. https://doi.org/10.3389/fmicb.2018.01299
  5. Ragàs X., He X., Agut M., Roxo-Rosa M., Gonsalves A. R., Serra A. C., Nonell S. Singlet Oxygen in Antimicrobial Photodynamic Therapy: Photosensitizer-Dependent Production and Decay in E. coli. Molecules, 2013, vol. 18, pp. 2712–2725. https://doi.org/10.3390/molecules18032712
  6. Mondal D., Bera S. Porphyrins and phthalocyanines: Promising molecules for light-triggered antibacterial nanoparticles. Nat. Sci. Nanosci. Nanotechnol., 2014, vol. 5, pp. 1–14. https://doi.org/10.1088/2043-6262/5/3/033002
  7. Simões C., Gomes M. C., Neves M. G., Cunha A., Tomé J. P. C., Tomé A. C., Cavaleiro J. A. S., Almeida A., Faustino M. A. F. Photodynamic Inactivation of Escherichia coli with Cationic Meso-Tetraarylporphyrins – The Charge Number and Charge Distribution Effects. Catal. Today, 2016, vol. 266, pp. 197–204. https://doi.org/10.1016/j.cattod.2015.07.031
  8. Kou J., Dou D., Yang L. Porphyrin photosensitizers in photodynamic therapy and its Applications. Oncotarget, 2017, vol. 8, pp. 81591–89603. https://doi.org/10.18632/oncotarget.20189
  9. Sun C., Jora M., Solivio B., Limbach P. A., Addepalli B. The Effects of Ultraviolet Radiation on Nucleoside Modifications in RNA. ACS Chem. Biol., 2018, vol. 13, pp. 567–572. https://doi.org/10.1021/acschembio.7b00898
  10. Lin Y., Zhou T., Bai R., Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J. of Enzyme Inhibition and Medicinal Chemistry, 2020, vol. 35, no. 1, pp. 1080–1099. https://doi.org/10.1080/14756366.2020.1755669
  11. Tuchin V. V., Genina E. A., Tuchina E. S., Svetlakova A. V., Svenskaya Y. I. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Advanced Drug Delivery Reviews, 2022, vol. 180, article no. 114037. https://doi.org/10.1016/j.addr.2021.114037
  12. Savelyeva I. O., Zhdanova K. A., Gradova M. A., Gradov O. V., Bragina N. A. Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy. Current Issues in Molecular Biology, 2023, vol. 45, no. 12, pp. 9793–9822. https://doi.org/10.3390/cimb45120612
  13. Shatila F., Tieman G. M. O., Musolino S. F., Wulff J. E., Buckley H. L. Antimicrobial Photodynamic Inactivation of Planktonic and Biofilm Cells by Covalently Immobilized Porphyrin on Polyethylene Terephthalate Surface. Int. Biodeterior. Biodegrad., 2023, vol. 178, article no. 105567. https://doi.org/10.1016/j.ibiod.2023.105567
  14. Korchenova M. V., Tuchina E. S., Shvayko V. Y., Gulkhandanyan A. G., Zakoyan A. A., Kazaryan R. K., Gulkhandanyan G. V., Dzhagarov B. M., Tuchin V. V. Photodynamic effect of radiation with the wavelength 405 nm on the cells of microorganisms sensitised by metalloporphyrin compounds. Quantum Electronics, 2016, vol. 46, no. 6, pp. 521–527. https://doi.org/10.1070/qel16110
  15. Grinholc M., Szramka B., Kurlenda J., Graczyk A., Bielawski K. P. Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent. J. of Photochemistry and Photobiology B: Biology, 2008, vol. 90, pp. 57–63. https://doi.org/10.1016/j.jphotobiol.2007
  16. Lipovsky A., Nitzan Y., Friedmann H., Lubart R. Sensitivity of Staphylococcus aureus Strains to Broadband Visible Light. Photochemistry and Photobiology, 2009, vol. 85, pp. 255–260. https://doi.org/10.1111/j.1751-1097.2008.00429.x
  17. Kossakowska M., Nakonieczna J., Kawiak A., Kurlenda J., Bielawski K. P., Grinholc M. Discovering the mechanisms of strain-dependent response of Staphylococcus aureus to photoinactivation: Oxidative stress toleration, endogenous porphyrin level and strain’s virulence. Photodiagnosis and Photodynamic Therapy, 2013, vol. 10, pp. 348–355. https://doi.org/10.1016/j.pdpdt.2013.02.004
  18. Bartolomeu M., Rocha S., Cunha A., Neves M. G., Faustino M. A., Almeida A. Effect of Photodynamic Therapy on the Virulence Factors of Staphylococcus aureus. Frontiers in Microbiology, 2016, vol. 7, pp. 267–278. https://doi.org/10.3389/fmicb.2016.00267
  19. Zhang Q.-Z., Zhao K.-Q., Wu Y., Li X.-H., Yang C., Guo L.-M. 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm. PLoS ONE, 2017, vol. 12, no. 3, article no. e0174627. https://doi.org/10.1371/journal.pone.0174627
  20. Gulías Ò., McKenzie G., Bayó M., Agut M., Nonell S. Effective Photodynamic Inactivation of 26 Escherichia coli Strains with Different Antibiotic Susceptibility Profiles: A Planktonic and Biofilm Study. Antibiotics, 2020, vol. 9, no. 3, article no. 98. https://doi.org/10.3390/antibiotics9030098
  21. Li G., Lai Z., Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. Adv. Sci., 2021, vol. 10, article no. 2206602. https://doi.org/10.1002/advs.202206602
  22. Gyulkhandanyan A. G., Paronyan M. H., Gyulkhandanyan A. G., Ghazaryan K. R., Parkhats M. V., Dzhagarov B. M., Korchenova M. V., Lazareva E. N., Tuchina E. S., Gyulkhandanyan G. V., Tuchin V. V. Meso-substituted cationic 3-and 4-N-Pyridylporphyrins and their Zn(II) derivatives for antibacterial photodynamic therapy. J. Innov. Opt. Health Sci., 2022, vol. 15, article no. 2142007. https://doi.org/10.1142/S1793545821420074
  23. Tovmasyan A. G., Babayan N. S., Sahakyan L. A., Shahkhatuni A. G., Gasparyan G. H., Aroutiounian R. M., Ghazaryan R. K. Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes. J. of Porphyrins and Phthalocyanines, 2008, vol. 12, no. 10, pp. 1100–1110. https://doi.org/10.1142/s1088424608000467
  24. Gyulkhandanyan G. V., Sargsyan A. A., Paronyan M. H., Sheyranyan M. A. Absorption and fluorescence spectra parameters of cationic porphyrins for photodynamic therapy of tumors. Biolog. Journal of Armenia, 2020, vol. 3, no. 72, pp. 72–76.
  25. Krasnikova L. V., Gunkova P. I. Obschaya i pischevaya mikrobiologya [General and food microbiology]. St. Petersburg, University ITMO, 2016. 135 p.
  26. Bukharin O. V., Sgibnev A. V., Cherkasov S. V. Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences. Sposob vyyavleniya u bakteriy ingibitorov katalazy mikroorganismov [Method for identifying microorganism catalase inhibitors in bacteria]. Patent RF no. 2180353, 2002 (in Russian).
  27. Gashev S. N., Betlyaeva F. H., Lupinos M. Yu. Matematicheskie metody v biologii: analis biologicheskikh dannykh v sisteme Statistica [Mathematical methods in biology: Analysis of biological data in the Statistica system]. Мoscow, Yurayt, 2017. 208 p.
  28. Balhaddad A. A., AlQranei M. S., Ibrahim M. S., Weir M. D., Martinho F. C., Xu H. H. K., Melo M. A. S. Light Energy Dose and Photosensitizer Concentration Are Determinants of Effective Photo-Killing against Caries-Related Biofilms. Int. J. Mol. Sci., 2020, vol. 21, no. 20, article no. 7612. https://doi.org/10.3390/ijms21207612
  29. Zada L., Anwar S., Imtiaz S. In vitro study: Methylene blue-based antibacterial photodynamic inactivation of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2024, vol. 108, article no. 169. https://doi.org/10.1007/s00253-024-13009-5
  30. Fujii J., Soma Y., Matsuda Y. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death. Molecules, 2023, vol. 28, article no. 4085. https://doi.org/10.3390/molecules28104085
  31. Demidova T. N., Hamblin M. R. Effect of Cell-Photosensitizer Binding and Cell Density on Microbial Photoinactivation. Antimicrobial Agents and Chemotherapy, 2005, vol. 49, pp. 2329–2335. https://doi.org/10.1128/aac.49.6.2329-2335.2005
  32. Jori G., Fabris C., Soncin M., Ferro S., Coppellotti O., Dei D., Roncucci G. Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers in Surgery and Medicine, 2006, vol. 38, pp. 468–481.
  33. Gapeeva A. B., Scherbatyuk T. G. Modification of hypoxic conditions during photodynamic therapy. Biological Membranes, 2020, vol. 37, no. 3, pp. 163–174.
  34. Bogdanov A. A., Klimenko V. V., Bogdanov An. A., Verlov N. A., Moiseenko V. M. Direct photogeneration of singlet oxygen in biological media for cancer therapy. Practical Oncology, 2023, vol. 24, no. 1, pp. 39–47.
  35. Peskova N. N., Brilkina A. A., Gorokhova A. A., Shilyagina N. Y., Kutova O. M., Nerush A. S., Balalaeva I. V. The localization of the photosensitizer determines the dynamics of the secondary production of hydrogen peroxide in cell cytoplasm and mitochondria. J. of Photochemistry and Photobiology B, 2021, vol. 219, article no. 112208. https://doi.org/10.1016/j.jphotobiol.2021.112208
  36. Feuerstein O., Moreinos D., Steinberg D. Synergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans. J. Antimicrob. Chemother., 2006, vol. 57, pp. 872–876. https://doi.org/10.1093/jac/dkl070
  37. Donegan N. P., Manna A. C., Tseng C. W., Liu G. Y., Cheung A. L. CspA regulation of Staphylococcus aureus carotenoid levels and σ B activity is controlled by YjbH and Spx. Molecular Microbiology, 2019, vol. 112, no. 2, pp. 532–551. https://doi.org/10.1111/mmi.14273
  38. Seel W., Baust D., Sons D., Albers M., Etzbach L., Fuss J., Lipski A. Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Scientific Reports, 2020, vol. 10, pp. 328–341. https://doi.org/10.1038/s41598-019-57006-5
  39. Manrique-Moreno M., Jemioіa-Rzeminska M., Múnera-Jaramillo J., López G.-D., Suesca E., Leidy C., Strzaіka K. Staphylococcus aureus Carotenoids Modulate the Thermotropic Phase Behavior of Model Systems That Mimic Its Membrane Composition. Membranes, 2022, vol. 12, pp. 945–954. https://doi.org/10.3390/membranes12100945
  40. Stadtman E. R., Levine R. L. Free Radical-Mediated Oxidation of Free Amino Acids and Amino Acid Residues in Proteins. Amino Acids, 2003, vol. 25, pp. 207–218. https://doi.org/10.1007/s00726-003-0011-2
  41. Tuchina E. S., Permyakova N. F., Tuchin V. V. The effect of LED-light action on microbial colony forming ability of several species of staphylococcus. Proc. SPIE 6535, Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII, 2007, vol. 6535, pp. 65351X1–7. https://doi.org/10.1117/12.741013
  42. Hessling M., Spellerberg B., Hoenes K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths – a review on existing data. FEMS Microbiol. Lett., 2017, vol. 364, no. 2, pp. 270–281. https://doi.org/10.3389/fmed.2021.642609
  43. Plavskii V. Y., Mikulich A. V., Tretyakova A. I., Leusenka I. A., Plavskaya L. G., Kazyuchits O. A., Dobysh I. I., Krasnenkova T. P. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. J. Photochem. Photobiol. B, 2018, vol. 183, pp. 172–183. https://doi.org/10.1016/j.jphotobiol.2018.04.021
  44. Huang S., Lin S., Qin H., Jiang H., Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines, 2023, vol. 11, no. 4, article no. 1197. https://doi.org/10.3390/biomedicines11041197
  45. Mkrtchyan L., Seferyan T., Parkhats M., Lepeshkevich S., Dzhagarov B., Shmavonyan G., Tuchina E., Tuchin V., Gyulkhandanyan G. The role of singlet oxygen and hydroxyl radical in the photobleaching of meso-substituted cationic pyridyl porphyrins in the presence of folic acid. J. of Innovative Optical Health Sciences, 2024, vol. 1, pp. 1–20. https://doi.org/10.1142/S1793545824400029
  46. Khatoon Z., McTiernan C. D., Suuronen E. J., Mah T.-F., Alarcon E. I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 2018, vol. 4, no. 12, article no. e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
Поступила в редакцию: 
31.03.2024
Принята к публикации: 
15.06.2024
Опубликована: 
30.08.2024