Для цитирования:
Шевцова С. А., Савельева М. С., Майорова О. А., Прихожденко Е. С. Влияние малых концентраций гиалуроновой кислоты на структуру изолята сывороточного протеина при конъюгировании: разработка и оптимизация моделей машинного обучения на основе адаптивного бустинга для анализа спектроскопических данных // Известия Саратовского университета. Новая серия. Серия: Физика. 2025. Т. 25, вып. 3. С. 305-315. DOI: 10.18500/1817-3020-2025-25-3-305-315, EDN: KWEXHY
Влияние малых концентраций гиалуроновой кислоты на структуру изолята сывороточного протеина при конъюгировании: разработка и оптимизация моделей машинного обучения на основе адаптивного бустинга для анализа спектроскопических данных
В данном исследовании с помощью спектроскопии комбинационного рассеяния (КР) было изучено влияние малых концентраций гиалуроновой кислоты (ГК, 0.1–0.5%) на структуру изолята сывороточного протеина (ИСП) при конъюгировании. Анализ спектров КР выявил, что основное изменение происходит в области 1003 см–1, соответствующей колебаниям фенилаланина. Для классификации и регрессионного анализа спектральных данных использовались ансамблевые методы машинного обучения, включая адаптивный бустинг (AdaBoost). Оптимальные параметры модели (глубина дерева принятия решений max_depth=3, количество деревьев в ансамбле 325) обеспечили высокую точность классификации (98.3%) и коэффициент детерминации (R2 = 0.91) при объеме обучающей выборки 300 спектров на образец. Подбор параметров проводился с помощью решетчатого поиска (GridSearchCV). Было также изучено влияние объема обучающей выборки на эффективность модели адаптивного бустинга. Модель также позволила выявить ключевые волновые числа (763, 1003, 1240, 1400 см–1), наиболее значимые для прогнозирования изменений в структуре ИСП при добавлении ГК. Результаты демонстрируют перспективность комбинации спектроскопии КР и машинного обучения для анализа белково-полисахаридных взаимодействий.
- Vaou N., Stavropoulou E., Voidarou C., Tsakris Z., Rozos G., Tsigalou C., Bezirtzoglou E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics, 2022, vol. 11, iss. 8, art. 1014. https://doi.org/10.3390/antibiotics11081014
- Mehta N., Kumar P., Verma A. K., Umaraw P., Kumar Y., Malav O. P., Sazili A. Q., Domínguez R., Lorenzo J. M. Microencapsulation as a noble technique for the application of bioactive compounds in the food Industry: A comprehensive review. Appl. Sci., 2022, vol. 12, no. 3, art. 1424. https://doi.org/10.3390/app12031424
- Senthilkumar K., Vijayalakshmi A., Jagadeesan M., Somasundaram A., Pitchiah S., Gowri S. S., Alharbi S. A., Ansari M. J., Ramasamy P. Preparation of self-preserving personal care cosmetic products using multifunctional ingredients and other cosmetic ingredients. Sci. Rep., 2024, vol. 14, no. 1, art. 19401. https://doi.org/10.1038/s41598-024-57782-9
- Saletnik A., Saletnik B., Puchalski C. Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues. Molecules, 2021, vol. 26, no. 6, art. 1537. https://doi.org/10.3390/molecules26061537
- Rebrosova K., Samek O., Kizovsky M., Bernatova S., Hola V., Ruzicka F. Raman spectroscopy – A novel method for identification and characterization of microbes on a single-cell level in clinical settings. Front. Cell. Infect. Microbiol., 2022, vol. 12, art. 866463. https://doi.org/10.3389/fcimb.2022.866463
- Pezzotti G. Raman spectroscopy in cell biology and microbiology. J. Raman Spectrosc., 2021, vol. 52, no. 12, pp. 2348–2443. https://doi.org/10.1002/jrs.6204
- Kočišová E., Kuižová A., Procházka M. Analytical applications of droplet deposition Raman spectroscopy. Analyst, 2024, vol. 149, iss. 12, pp. 3276–3287. https://doi.org/10.1039/D4AN00336E
- Dodo K., Fujita K., Sodeoka M. Raman Spectroscopy for Chemical Biology Research. J. Am. Chem. Soc., 2022, vol. 144, no. 43, pp. 19651–19667. https://doi.org/10.1021/jacs.2c05359
- Koronaki E. D., Kaven L. F., Faust J. M., Kevrekidis I. G., Mitsos A. Nonlinear manifold learning determines microgel size from Raman spectroscopy. AIChE J., 2024, vol. 70, no. 10, art. e18494. https://doi.org/10.1002/aic.18494
- Zhang Y., Gao P., Zhang N., Hong H., Ruan J., Gao X. Efficient detection of specific pharmaceutical components in compound medications based on Raman spectroscopy. Opt. Commun., 2025, vol. 577, art. 131470. https://doi.org/10.1016/j.optcom.2024.131470
- Sun Y., Tang H., Zou X., Meng G., Wu N. Raman spectroscopy for food quality assurance and safety monitoring: A review. Curr. Opin. Food Sci., 2022, vol. 47, art. 100910. https://doi.org/10.1016/j.cofs.2022.100910
- Fernández-Manteca M. G., Ocampo-Sosa A. A., de Alegría-Puig C. R., Roiz M. P., Rodríguez-Grande J., Madrazo F., Calvo J., Rodríguez-Cobo L., López-Higuera J. M., Fariñas M. C., Cobo A. Automatic classification of Candida species using Raman spectroscopy and machine learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2023, vol. 290, art. 122270. https://doi.org/10.1016/j.saa.2022.122270
- Guo F., Yang X., Zhang Z., Liu S., Zhang Y., Wang H. Rapid Raman spectroscopy analysis assisted with machine learning: A case study on Radix Bupleuri. J. Sci. Food Agric., 2025, vol. 105, iss. 4, pp. 2412–2419. https://doi.org/10.1002/jsfa.14012
- Tang J.-W., Li F., Liu X., Wang J. T., Xiong X. S., Lu X. Y., Zhang X.-Y., Si Y.-T., Umar Z., Tay A. C. Y., Marshall B. J., Yang W.-X., Gu B., Wang L. Detection of Helicobacter pylori Infection in Human Gastric Fluid Through Surface-Enhanced Raman Spectroscopy Coupled With Machine Learning Algorithms. Lab. Investig., 2024, vol. 104, iss. 2, art. 100310. https://doi.org/10.1016/j.labinv.2023.100310
- Freund Y., Schapire R. E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci., 1997, vol. 55, no. 1, pp. 119–139. https://doi.org/10.1006/jcss.1997.1504
- Zhu J., Zou H., Rosset S., Hastie T. Multi-class adaboost. Stat. Interface, 2009, vol. 2, no. 3, pp. 349–360. https://doi.org/10.4310/SII.2009.v2.n3.a8
- Wang P., Li Y., Wang K., Qu H. Research on the application of ensemble learning methods for rapid diagnosis of osteoarthritis. Ensemble learning-assisted rapid diagnosis methods. Practical research on the application of serum Raman spectroscopy combined with ensemble learning methods. In: ICBAR’24: Proceedings of the 2024 4th International Conference on Big Data, Artificial Intelligence and Risk Management. New York, ACM, 2024, pp. 421–427. https://doi.org/10.1145/3718751.3718818
- Poth M., Magill G., Filgertshofer A., Popp O., Großkopf T. Extensive evaluation of machine learning models and data preprocessings for Raman modeling in bioprocessing. J. Raman Spectrosc., 2022, vol. 53, no. 9, pp. 1580–1591. https://doi.org/10.1002/jrs.6402
- Mishra D. P., Gupta H. K., Saajith G., Bag R. Optimizing heart disease prediction model with gridsearch CV for hyperparameter tuning. In: 2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC–CGU). IEEE, 2024, pp. 1–6. https://doi.org/10.1109/IC-CGU58078.2024.10530772
- Muzayanah R., Pertiwi D. A. A., Ali M., Muslim M. A. Comparison of gridsearchcv and bayesian hyperparameter optimization in random forest algorithm for diabetes prediction. J. Soft Comput. Explor., 2024, vol. 5, no. 1, pp. 86–91. https://doi.org/10.52465/joscex.v5i1.308
- Kurniasih A., Previana C. N. Implementation of Grid-SearchCV to find the best hyperparameter combination for classification model flgorithm in predicting water potability. J. Artif. Intell. Eng. Appl., 2025, vol. 4, no. 2, pp. 1174–1182. https://doi.org/10.59934/jaiea.v4i2.844
- Rajput D., Wang W.-J., Chen C.-C. Evaluation of a decided sample size in machine learning applications. BMC Bioinformatics, 2023, vol. 24, no. 1, art. 48. https://doi.org/10.1186/s12859-023-05156-9
- Ramezan C. A., Warner T. A., Maxwell A. E., Price B. S. Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sens., 2021, vol. 13, iss. 3, art. 368. https://doi.org/10.3390/rs13030368
- Stahlschmidt S. R., Ulfenborg B., Synnergren J. Multimodal deep learning for biomedical data fusion: A review. Brief. Bioinform., 2022, vol. 23, iss. 2, art. bbab569. https://doi.org/10.1093/bib/bbab569
- Bates F., Busato M., Piletska E., Whitcombe M. J., Karim K., Guerreiro A., del Valle M., Giorgetti A., Piletsky S. Computational design of molecularly imprinted polymer for direct detection of melamine in milk. Sep. Sci. Technol., 2017, vol. 52, iss. 8, pp. 1441–1453. https://doi.org/10.1080/01496395.2017.1287197
- Lu Y., Xia Y., Liu G., Pan M., Li M., Lee N. A., Wang S. A Review of methods for detecting melamine in food samples. Crit. Rev. Anal. Chem., 2017, vol. 47, iss. 1, pp. 51–66. https://doi.org/10.1080/10408347.2016.1176889
- Einkamerer O. B., Ferreira A. V., Fair M. D., Hugo A. The effect of dietary non-protein nitrogen content on the meat quality of finishing lambs. S. Afr. J. Anim., 2024, vol. 54, no. 3, pp. 340–357. https://doi.org/10.4314/sajas.v54i3.05
- Alizadeh Sani M., Jahed-Khaniki G., Ehsani A., Shariatifar N., Hadi Dehghani M., Hashemi M., Hosseini H., Abdollahi M., Hassani S., Bayrami Z., McClements D. J. Metal-organic framework fluorescence sensors for rapid and accurate detection of melamine in milk powder. Biosensors, 2023, vol. 13, no. 1, art. 94. https://doi.org/10.3390/bios13010094
- Lukacs M., Zaukuu J. L. Z., Bazar G., Pollner B., Fodor M., Kovacs Z. Comparison of multiple NIR spectrometers for detecting low-concentration nitrogen-based adulteration in protein powders. Molecules, 2024, vol. 29, no. 4, art. 781. https://doi.org/10.3390/molecules29040781
- Lukacs M., Bazar G., Pollner B., Henn R., Kirchler C. G., Huck C. W., Kovacs Z. Near infrared spectroscopy as an alternative quick method for simultaneous detection of multiple adulterants in whey protein-based sports supplement. Food Control, 2018, vol. 94, pp. 331–340. https://doi.org/10.1016/j.foodcont.2018.07.004
- Marinho A., Nunes C., Reis S. Hyaluronic acid: A key ingredient in the therapy of inflammation. Biomolecules, 2021, vol. 11, no. 10, art. 1518. https://doi.org/10.3390/biom11101518
- Yasin A., Ren Y., Li J., Sheng Y., Cao C., Zhang K. Advances in hyaluronic acid for biomedical applications. Front. Bioeng. Biotechnol., 2022, vol. 10, art. 910290. https://doi.org/10.3389/fbioe.2022.910290
- Juncan A. M., Moisă D. G., Santini A., Morgovan C., Rus L. L., Vonica-Țincu A. L., Loghin F. Advantages of hyaluronic acid and Its combination with other bioactive ingredients in cosmeceuticals. Molecules, 2021, vol. 26, no. 15, art. 4429. https://doi.org/10.3390/molecules26154429
- Iaconisi G. N., Lunetti P., Gallo N., Cappello A. R., Fiermonte G., Dolce V., Capobianco L. Hyaluronic Acid: A powerful biomolecule with wide-ranging applications – A comprehensive review. Int. J. Mol. Sci., 2023, vol. 24, no. 12, art. 10296. https://doi.org/10.3390/ijms241210296
- Wang N., Zhao X., Jiang Y., Ban Q., Wang X. Enhancing the stability of oil-in-water emulsions by non-covalent interaction between whey protein isolate and hyaluronic acid. Int. J. Biol. Macromol., 2023, vol. 225, pp. 1085–1095. https://doi.org/10.1016/j.ijbiomac.2022.11.170
- Zhong W., Li C., Diao M., Yan M., Wang C., Zhang T. Characterization of interactions between whey protein isolate and hyaluronic acid in aqueous solution: Effects of pH and mixing ratio. Colloid. Surf. B: Biointerfaces, 2021, vol. 203, art. 111758. https://doi.org/10.1016/j.colsurfb.2021.111758
- Zhong W., Zhang T., Dong C., Li J., Dai J., Wang C. Effect of sodium chloride on formation and structure of whey protein isolate/hyaluronic acid complex and its ability to loading curcumin. Colloid. Surf. A: Physicochem. Eng. Asp., 2022, vol. 632, art. 127828. https://doi.org/10.1016/j.colsurfa.2021.127828
- Zhong W., Li J., Wang C., Zhang T. Formation, stability and in vitro digestion of curcumin loaded whey protein/hyaluronic acid nanoparticles: Ethanol desolvation vs. pH-shifting method. Food Chem., 2023, vol. 414, art. 135684. https://doi.org/10.1016/j.foodchem.2023.135684
- Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 2011, vol. 12, iss. 85, pp. 2825–2830. Available at: http://jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf (accessed April 22, 2025).
- Zhao Y., Ma C. Y., Yuen S. N., Phillips D. L. Study of succinylated food proteins by Raman spectroscopy. J. Agric. Food Chem., 2004, vol. 52, iss. 7, pp. 1815–1823. https://doi.org/10.1021/jf030577a
- Mayorova O. A., Saveleva M. S., Bratashov D. N., Prikhozhdenko E. S. Combination of machine learning and Raman spectroscopy for determination of the complex of whey protein isolate with hyaluronic acid. Polymers, 2024, vol. 16, no. 5, art. 666. https://doi.org/10.3390/polym16050666
- Breiman L. Random Forests. Mach. Learn., 2001, vol. 45, pp. 5–32. https://doi.org/10.1023/A:1010933404324
- Becker T., Rousseau A. J., Geubbelmans M., Burzykowski T., Valkenborg D. Decision trees and random forests. Am. J. Orthod. Dentofac. Orthop., 2023, vol. 164, iss. 6, pp. 894–897. https://doi.org/10.1016/j.ajodo.2023.09.011
- Sun Z., Wang G., Li P., Wang H., Zhang M., Liang X. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Syst. Appl., 2024, vol. 237, pt. B, art. 121549. https://doi.org/10.1016/j.eswa.2023.121549
- Friedman J. H. Greedy Function Approximation: A gradient boosting machine. Ann. Stat., 2001, vol. 29, no. 5, pp. 1189–1232. Available at: http://www.jstor.org/stable/2699986 (accessed April 22, 2025)
- Friedman J. H. Stochastic gradient boosting. Comput. Stat. Data Anal., 2002, vol. 38, iss. 4, pp. 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2
- Wang M., Zhang J. Surface enhanced Raman spectroscopy Pb2+ Ion Detection based on a gradient boosting decision tree algorithm. Chemosensors, 2023, vol. 11, no. 9, art. 509. https://doi.org/10.3390/chemosensors11090509
- 265 просмотров