Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Gontchar I. I., Chushnyakova M. V., Khmyrova N. A. Systematics of the Coulomb barrier characteristics resulting from M3Y nucleon-nucleon forces for reactions with heavy ions [Гончар И. И., Чушнякова М. В., Хмырова Н. А. Систематика параметров кулоновских барьеров, вычисленных с использованием М3Y нуклон-нуклонных сил, в реакциях с тяжёлыми ионами] // Известия Саратовского университета. Новая серия. Серия: Физика. 2023. Т. 23, вып. 2. С. 157-166. DOI: 10.18500/1817-3020-2023-23-2-157-166, EDN: DNUYIV


Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
30.06.2023
Полный текст в формате PDF(Ru):
(загрузок: 100)
Язык публикации: 
английский
Тип статьи: 
Научная статья
УДК: 
539.17.01
EDN: 
DNUYIV

Systematics of the Coulomb barrier characteristics resulting from M3Y nucleon-nucleon forces for reactions with heavy ions
[Систематика параметров кулоновских барьеров, вычисленных с использованием М3Y нуклон-нуклонных сил, в реакциях с тяжёлыми ионами]

Авторы: 
Гончар Игорь Иванович, Омский государственный университет путей сообщения
Чушнякова Мария Владимировна, Омский государственный технический университет
Хмырова Наталья Анатольевна, Омский государственный университет путей сообщения
Аннотация: 

В литературе сечения слияния (захвата в орбитальное движение) для сложных сферических ядер часто вычисляются с помощью характеристик барьера, соответствующего лобовому столкновению: высоты барьера, его радиуса и жёсткости. В настоящей работе мы рассчитываем эти величины систематически в рамках модели двойной свёртки. В качестве эффективного нуклон-нуклонного (NN) взаимодействия используется парижское M3Y взаимодействие с нулевым радиусом обменной части. Её амплитуда варьируется так, чтобы воспроизводить высоту барьера, полученного при использовании обменной части с конечным радиусом взаимодействия и плотностной зависимостью NN-взаимодействия. Для нуклонных плотностей использовано два варианта. Первый (V-опция) основан на экспериментальных зарядовых плотностях. Второй (C-опция) – это протонные и нейтронные плотности, вычисленные с помощью подхода Хартри–Фока–Боголюбова и опубликованные МАГАТЭ. Для обеих опций нами построены аналитические аппроксимации высоты барьера, его радиуса и жёсткости. Точность этой аппроксимации составляет около 3% для высоты барьера и около 10% для жёсткости. Предложенные аппроксимации могут быть полезны всем для быстрой оценки сечений захвата с помощью модели параболического барьера.

Благодарности: 
Настоящая работа была поддержана грантом Фонда развития теоретической физики и математики «БАЗИС».
Список источников: 
  1. Hofmann S., Münzenberg G. The discovery of the heaviest elements. Rev. Mod. Phys., 2000, vol. 72, pp. 733–767. https://doi.org/10.1103/RevModPhys.72.733
  2. Berriman A. C., Hinde D. J., Dasgupta M., Morton C. R., Butt R. D., Newton J. O. Unexpected inhibition of fusion in nucleus–nucleus collisions. Nature, 2001, vol. 413, pp. 144–147. https://doi.org/10.1038/35093069
  3. Oganessian Yu. Ts., Utyonkov V. K. Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A, 2015, vol. 944, pp. 62–98. https://doi.org/10.1016/j.nuclphysa.2015.07.003
  4. Andreyev A. N., Antalic S., Ackermann D., Cocolios T. E., Comas V. F., Elseviers J., Franchoo S., Heinz S., Heredia J. A., Heßberger F. P., Hofmann S., Huyse M., Khuyagbaatar J., Kojouharov I., Kindler B., Lommel B., Mann R., Page R. D., Rinta-Antilla S., Sapple P. J., Šáro Š., Duppen P. Van, Venhart M., Watkins H. V. α decay of 180,181Pb. Phys. Rev. C, 2009, vol. 80, article no. 054322. https://doi.org/10.1103/PhysRevC.80.054322
  5. Kalaninová Z., Andreyev A. N., Antalic S., Heßberger F. P., Ackermann D., Andel B., Drummond M. C., Hofmann S., Huyse M., Kindler B., Lane J. F. W., Liberati V., Lommel B., Page R. D., Rapisarda E., Sandhu K., Šáro Š., Thornthwaite A., Duppen P. Van. α decay of the very neutron-deficient isotopes 197-199Fr. Phys. Rev. C, 2013, vol. 87, article no. 044335. https://doi.org/10.1103/PhysRevC.87.044335
  6. Loveland W. An experimentalist’s view of the uncertainties in understanding heavy element synthesis. Eur. Phys. J. A, 2015, vol. 51, article no. 120. https://doi.org/10.1140/epja/i2015-15120-2
  7. Newton J. O., Butt R. D., Dasgupta M., Hinde D. J., Gontchar I. I., Morton C. R., Hagino K. Systematics of precise nuclear fusion cross sections: The need for a new dynamical treatment of fusion? Phys. Lett., 2004, vol. B586, pp. 219–224. https://doi.org/10.1016/j.physletb.2004.02.052
  8. Chushnyakova M. V., Gontchar I. I., Khmyrova N. A. Detail study of application of the relativistic meanfield effective NN forces for heavy-ion fusion within a dynamical model. J. Phys., 2021, vol. G48, article no. 015101. https://doi.org/10.1088/1361-6471/ab907a
  9. Fröbrich P., Lipperheide R. Theory of nuclear reactions. Clarendon Press, Oxford, 1996. 476 p.
  10. Ismail M., Ramadan K. A. Microscopic calculation of sub-barrier fusion cross section and barrier distribution using M3Y-type forces. J. Phys., 2000, vol. G26, pp. 1621–1633. https://doi.org/10.1088/0954-3899/26/10/312
  11. Zagrebaev V. I., Aritomo Y., Itkis M. G., Oganessian Yu. Ts., Ohta M. Synthesis of superheavy nuclei: How accurately can we describe it and calculate the cross sections? Phys. Rev., 2001, vol. C65, article no. 014607. https://doi.org/10.1103/PhysRevC.65.014607
  12. Chushnyakova M. V., Gontchar I. I. Oscillations of the fusion cross-sections in the 16O+16O reaction. Pramana, 2015, vol. 85, pp. 653–665. https://doi.org/10.1007/s12043-014-0917-0
  13. Wong C. Y. Interaction Barrier in Charged-Particle Nuclear Reactions. Phys. Rev. Lett., 1973, vol. 31, pp. 766–769. https://doi.org/10.1103/PhysRevLett.31.766
  14. Glas D., Mosel U. Limitation on complete fusion during heavy-ion collisions. Phys. Rev., 1974, vol. C10, pp. 2620–2622. https://doi.org/10.1103/PhysRevC.10.2620
  15. Leigh J. R., Dasgupta M., Hinde D. J., Mein J. C., Morton C. R., Lemmon R. C., Lestone J. P., Newton J. O., Timmers H., Wei J. X., Rowley N. Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W. Phys. Rev., 1995, vol. C52, pp. 3151–3166. https://doi.org/10.1103/PhysRevC.52.3151
  16. Hagino K., Rowley N., Kruppa A. T. A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comp. Phys. Comm., 1999, vol. 123, pp. 143–152. https://doi.org/10.1016/S0010-4655(99)00243-X.CCFUL
  17. Morton C. R., Berriman A. C., Dasgupta M., Hinde D. J., Newton J. O., Hagino K., Thompson I. J. Coupled-channels analysis of the 16O+208Pb fusion barrier distribution. Phys. Rev., 1999, vol. C60, article no. 044608. https://doi.org/10.1103/PhysRevC.60.044608
  18. Jisha P., Vinodkumar A. M., Sanila S., Arjun K., Babu B. R. S., Gehlot J., Nath S., Madhavan N., Biswas R., Parihari A., Vinayak A., Mahato A., Prasad E., Visakh A. C. Role of positive transfer Q values in fusion cross sections for 18O+182,184,186W reactions. Phys. Rev., 2022, vol. C105, article no. 054614. https://doi.org/10.1103/PhysRevC.105.054614
  19. Sun X.-X., Guo L. Microscopic study of compound-nucleus formation in cold-fusion reactions. Phys. Rev., 2022, vol. C105, article no. 054610. https://doi.org/10.1103/PhysRevC.105.054610
  20. Błocki J., Randrup J., Świa̧teck W. J., Tsang C. F. Proximity forces. Ann. Phys. N. Y., 1977, vol. 105, pp. 427–462.
  21. Myers W., Świa̧tecki W. Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev., 2000, vol. C62, article no. 044610. https://doi.org/10.1103/PhysRevC.62.044610
  22. Zagrebaev V. I., Samarin V. V. Near-barrier fusion of heavy nuclei: Coupling of channels. Phys. At. Nucl., 2004, vol. 67, pp. 1462–1477. https://doi.org/10.1134/1.1788037
  23. Bansal M., Chopra S., Gupta R. K., Kumar R., Sharma M. K. Dynamical cluster-decay model using various formulations of a proximity potential for compact non-coplanar nuclei: Application to the 64Ni+100Mo reaction. Phys. Rev., 2012, vol. C86, article no. 034604. https://doi.org/10.1103/PhysRevC.86.034604
  24. Ghodsi O. N., Gharaei R. Analysis of heavy-ion fusion reactions at extreme sub-barrier energies using the proximity formalism. Phys. Rev., 2013, vol. C88, article no. 054617. https://doi.org/10.1103/PhysRevC.88.054617
  25. Kühtreiber J., Hille P., Forstner O., Friedmann H., Pavlik A., Priller A. 6,7Li+27Al reactions close to and below the Coulomb barrier. Phys. Rev., 2021, vol. C103, article no. 064605. https://doi.org/10.1103/PhysRevC.103.064605
  26. Wen P. W., Lin C. J., Jia H. M., Yang L., Yang F., Huang D. H., Luo T. P., Chang C., Zhang M. H., Ma N. R. New Coulomb barrier scaling law with reference to the synthesis of superheavy elements. Phys. Rev., 2022, vol. C105, article no. 034606. https://doi.org/10.1103/PhysRevC.105.034606
  27. Gross D. H. E., Kalinowski H. Friction model of heavyion collisions. Phys. Rep., 1978, vol. 45, pp. 175–210. https://doi.org/10.1016/0370-1573(78)90031-5
  28. Fröbrich P. Fusion and capture of heavy ions above the barrier: Analysis of experimental data with the surface friction model. Phys. Rep., 1984, vol. 116, pp. 337–400. https://doi.org/10.1016/0370-1573(84)90162-5
  29. Litnevsky V. L., Pashkevich V. V., Kosenko G. I., Ivanyuk F. A. Description of synthesis of super-heavy elements within the multidimensional stochastic model. Phys. Rev., 2014, vol. C89, article no. 034626. https://doi.org/10.1103/PhysRevC.89.034626
  30. Vries H. De, Jager C. W. De, Vries C. De. Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables, 1987, vol. 36, pp. 495–536. https://doi.org/10.1016/0092-640X(87)90013-1
  31. Terashima S., Sakaguchi H., Takeda H., Ishikawa T., Itoh M., Kawabata T., Murakami T., Uchida M., Yasuda Y., Yosoi M., Zenihiro J., Yoshida H. P., Noro T., Ishida T., Asaji S., Yonemura T. Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions. Phys. Rev., 2008, vol. C77, pp. 024317. https://doi.org/10.1103/PhysRevC.77.024317
  32. Sakaguchi H., Zenihiro J. Proton elastic scattering from stable and unstable nuclei –Extraction of nuclear densities. Prog. Part. Nucl. Phys., 2017, vol. 97, pp. 1–52. https://doi.org/10.1016/0092-640X(87)90013-1
  33. Miller G. A. Coherent-nuclear pion photoproduction and neutron radii. Phys. Rev., 2019, vol. C100, article no. 044608. https://doi.org/10.1103/PhysRevC.100.044608
  34. Sinha B. The optical potential and nuclear structure. Phys. Rep., 1975, vol. 20, pp. 1–57. https://doi.org/10.1016/0370-1573(75)90011-3
  35. Satchler G. R., Love W. G. Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep., 1979, vol. 55, pp. 183–254. https://doi.org/10.1016/0370-1573(79)90081-4
  36. Bertsch G., Borysowicz J., McManus H., Love W. G. Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys., 1977, vol. A284, pp. 399–419. https://doi.org/10.1016/0375-9474(77)90392-X
  37. Anantaraman N., Toki H., Bertsch G. F. An effective interaction for inelastic scattering derived from the Paris potential. Nucl. Phys., 1983, vol. A398, pp. 269–278. https://doi.org/10.1016/0375-9474(83)90487-6
  38. Lahiri C., Biswal S. K., Patra S. K. Effects of NN potentials on p Nuclides in the A ∼100–120 region. Int. J. Mod. Phys., 2016, vol. E25, article no. 1650015. https://doi.org/10.1142/S0218301316500154
  39. Bhuyan M., Kumar R. Fusion cross section for Ni-based reactions within the relativistic mean-field formalism. Phys. Rev., 2018, vol. C98, article no. 054610. https://doi.org/10.1103/PhysRevC.98.054610
  40. Migdal A. B. Theory of finite Fermi systems and application to atomic nuclei. Interscience, New York, 1967. 319 p.
  41. Kuzyakin R. A., Sargsyan V. V., Adamian G. G., Antonenko N. V. Quantum Diffusion Description of Large-Amplitude Collective Nuclear Motion. Phys. Elem. Part. At. Nucl., 2017, vol. 48, pp. 21–118.
  42. Gontchar I. I., Hinde D. J., Dasgupta M., Newton J. O. Double folding nucleus-nucleus potential applied to heavy-ion fusion reactions. Phys. Rev., 2004, vol. C69, article no. 024610. https://doi.org/10.1103/PhysRevC.69.024610
  43. Gontchar I. I., Chushnyakova M. V. A C-code for the double folding interaction potential of two spherical nuclei. Comp. Phys. Comm., 2010, vol. 181, pp. 168–182. https://doi.org/10.1016/j.cpc.2009.09.007
  44. Gontchar I. I., Chushnyakova M. V., Sukhareva O. M. Systematic application of the M3Y NN forces for describing the capture process in heavy-ion collisions involving deformed target nuclei. Phys. Rev., 2022, vol. C105, article no. 014612. https://doi.org/10.1103/PhysRevC.105.014612
  45. Chushnyakova M. V., Gontchar I. I., Sukhareva O. M., Khmyrova N. A. Modification of the effective Yukawa-type nucleon–nucleon interaction for accelerating calculations of the real part of the optical potential. Moscow Univ. Phys. Bull., 2021, vol. 76, pp. 202–208. https://doi.org/10.3103/S0027134921040056
  46. Chien L. H., Khoa D. T., Cuong D. C., Phuc N. H. Consistent mean-field description of the 12C+12C optical potential at low energies and the astrophysical S factor. Phys. Rev., 2018, vol. C98, article no. 064604. https://doi.org/10.1103/PhysRevC.98.064604
  47. Khoa D. T., Knyazkov O. M. Exchange effects in elastic and inelastic alpha- and heavy-ion scattering. Zeitschrift Für Phys., 1987, Bd. A328, S. 67–79. https://doi.org/10.1007/BF01295184
  48. Khoa D. T., Satchler G. R., Oertzen W. von. Nuclear incompressibility and density dependent NN interactions in the folding model for nucleus-nucleus potentials. Phys. Rev., 1997, vol. C56, pp. 954–969. https://doi.org/10.1103/PhysRevC.56.954
  49. Capote R., Herman M., Obložinský P., Young P. G., Goriely S., Belgya T., Ignatyuk A. V., Koning A. J., Hilaire S., Plujko V. A., Avrigeanu M., Bersillon O., Chadwick M. B., Fukahori T., Ge Z., Han Y., Kailas S., Kopecky J. Maslov V. M., Reffo G., Sin M., Soukhovitskii E. S., Talou P. RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets, 2009, vol. 110, pp. 3107–3214. https://doi.org/10.1016/J.NDS.2009.10.004
  50. Sargsyan V. V., Adamian G. G., Antonenko N. V., Scheid W., Zhang H. Q. Sub-barrier capture with quantum diffusion approach: Actinide-based reactions. Eur. Phys. J. A., 2011, vol. 47, article no. 38. https://doi.org/10.1140/epja/i2011-11038-y
  51. Sargsyan V. V., Adamian G. G., Antonenko N. V., Scheid W., Zhang H. Q. Astrophysical S factor, logarithmic slope of the excitation function, and barrier distribution. Phys. Rev. C, 2012, vol. 86, article no. 034614. https://doi.org/10.1103/PhysRevC.86.034614
  52. Chushnyakova M. V., Bhattacharya R., Gontchar I. I. Dynamical calculations of the above-barrier heavy-ion fusion cross sections using Hartree–Fock nuclear densities with the SKX coefficient set. Phys. Rev. C, 2014, vol. 90, article no. 017603. https://doi.org/10.1103/PhysRevC.90.017603
  53. Gontchar I. I., Chushnyakova M. V. Describing the heavy-ion above-barrier fusion using the bare potentials resulting from Migdal and M3Y double-folding approaches. J. Phys. G, 2016, vol. 43, article no. 045111. https://doi.org/10.1088/0954-3899/43/4/045111
Поступила в редакцию: 
02.01.2023
Принята к публикации: 
03.02.2023
Опубликована: 
30.06.2023