Systematics of the Coulomb barrier characteristics resulting from M3Y nucleon-nucleon forces for reactions with heavy ions

I. I. Gontchar, M. V. Chushnyakova, N. A. Khmyrova

1 Omsk State Transport University, 35 Marxa prospect, Omsk 644046, Russia
2 Omsk State Technical University, 11 Mira prospect, Omsk 644050, Russia

Abstract. In the literature, often the capture cross sections for spherical heavy-ions are calculated by virtue of the characteristics of the s-wave barrier: its energy, radius, and stiffness. We evaluate these quantities systematically within the framework of the double-folding model. For the effective nucleon-nucleon forces, the M3Y Paris forces with zero-range exchange part are used. The strength of this part is modified to fit the barrier energy obtained with the density-dependent finite-range exchange part. For the nucleon density, two options are employed. The first one (V-option) is based on the experimental charge densities. The second one, C-option, comes from the IAEA data base; these densities are calculated within the Hartree-Fock-Bogolubov approach. For both options, the analytical approximations are developed for the barrier energy, radius, and stiffness. The accuracy of these approximations is about 3% for the barrier energy and radius and about 10% for the stiffness. The proposed approximations can be easily used by everyone to estimate the capture cross sections within the parabolic barrier approximation.

Keywords: double-folding model, nucleon densities, characteristics of Coulomb barrier

Acknowledgements: This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC0-BY 4.0)
1. Introduction

Collision of two complex nuclei (heavy ions) resulting in the capture of them into orbital motion is the first step for formation of new superheavy chemical elements and/or isotopes [1–6]. The theoretical cross sections of the capture process are subject of significant uncertainties [6–8]. Often the capture cross sections of the capture process are subject of terms. The nuclear term (Strong nucleus-nucleus Potential, SnnP) is a crucial ingredient for any theoretical description of the capture process. Often for SnnP they use the Woods–Saxon profile [15–19]. The parameters of this profile (depth, diffuseness, and radius) are varied more or less arbitrary to fit \(\sigma_{th} \) to the above barrier experimental capture cross sections. Obviously, the Woods–Saxon profile represents the SnnP only qualitatively.

The much better founded proximity potential [20, 21] is employed every now and again [22–26]. This potential includes a universal dimensionless function independent of the colliding nuclei. Yet some parameters of this potential can be varied individually for a given reaction.

The single-folding potential [27, 28] is more rigorous. For evaluating this potential one needs to know: (i) the distributions of the nucleon centers of mass (the nucleon densities) for both colliding nuclei; and (ii) the interaction energy between the whole target (projectile) nucleus and a nucleon of the projectile (target) nucleus. For the nucleon densities, the two-parameter Fermi profile was applied in [27–29]. The parameters of the profile might be obtained from the electron scattering data [30]. However, the electron scattering is only sensitive to the Coulomb interaction. Therefore, in such experi-
ments the charge density distribution is measured, not the nucleon density. The direct experimental information of the nucleon density is scarce [31–33]. For the second ingredient of the single-folding potential being the nucleon–nucleus potential, usually the Woods–Saxon profiles are used. Parameters of these profiles are extracted from the fit of the elastic scattering data [28]. Thus, the single-folding approach still has six individual fit parameters for a given reaction.

Employing the effective nucleon–nucleon forces (NN forces) seems to be the next step towards a more realistic description of the nucleus–nucleus potential. This step is realized in the double-folding (DF) model [34, 35]. The nucleon densities of the colliding nuclei are one more ingredient of this model. Three such DF potentials using different effective NN forces are known in the literature: i) with the M3Y ones [36,37]; ii) with the relativistic mean-field ones [8, 38, 39]; iii) with the Migdal forces [40, 41].

The aim of the present work is to calculate systematically the characteristics of the heavy-ion s-wave Coulomb barriers B_0, R_{0s}, C_{0s} obtained within the framework of the DF approach with the M3Y NN forces and to explore whether there are any regularities in their behavior versus the approximate barrier energy

$$B_Z = \frac{Z_P Z_T}{A_T^{4/3} + A_T^{1/3}} \text{ MeV.} \quad (5)$$

The present paper is organized as follows. Section 2 is devoted to the DF model applied for the calculation of the nucleus-nucleus potential. The nucleon densities are discussed in Sec. 3. Sections 4 and 5 represent the results obtained for two sorts of densities. Conclusions are collected in Sec. 6.

2. The double-folding model

The nucleus-nucleus s-wave potential U_0 versus the distance R between the centers of mass of spherical projectile (P) and target (T) nuclei reads

$$U_0 (R) = U_C (R) + U_{nD} (R) + U_{nE} (R). \quad (6)$$

Here U_C is the Coulomb term, U_{nD} and U_{nE} stand for the direct and exchange parts of the SnnP, respectively. These three terms read

$$U_C = \int d\vec{r}_P \int d\vec{r}_T \rho_{AP} (\vec{r}_P) \rho_{CT} (\vec{r}_T), \quad (7)$$

$$U_{nD} = \int d\vec{r}_P \int d\vec{r}_T \rho_{AP} (\vec{r}_P) \rho_{DT} (\vec{r}_T), \quad (8)$$

$$U_{nE} = \int d\vec{r}_P \int d\vec{r}_T \rho_{AP} (\vec{r}_P) \rho_{DT} (\vec{r}_T). \quad (9)$$

Here ρ_{AP} and ρ_{CT} (ρ_{AP} and ρ_{CT}) denote the nucleon (charge) densities, \vec{r}_P and \vec{r}_T are the absolute values of the radius-vectors of the interacting points of the projectile and target nuclei. Vector \vec{s} connects two interacting points and is determined by vectors \vec{R}, \vec{r}_P, and \vec{r}_T (see Fig. 2 in [42, 43] or Fig. 1 in [44, 45]). The point-point Coulomb potential is denoted as $v_C (\vec{s})$.

In Eqs. (7), (8), (9), we neglect the possible time-dependence of the densities. This so-called frozen density approximation (FDA) seems to work reasonably well unless the density overlap of the colliding nuclei is about 1/3 of the saturation density 0.16 fm$^{-3}$. Recently, the FDA was inspected carefully and compared with the adiabatic density approximation (ADA) in Ref. [46].

The direct part of the NN-interaction $v_D (\vec{s})$ consists of two Yukawa terms [47, 48]:

$$v_D (\vec{s}) = 2 \sum_{i=1}^2 G_{D_i} \left[\exp \left(\frac{-\vec{s}}{r_{vi}} \right) \right] \left[\frac{s}{r_{vi}} \right] . \quad (10)$$

For the exchange part $v_E (\vec{s})$, one finds in the literature two options: an advanced and complicated one with a finite range and a simpler one with zero range [42, 48]. Equation (9) is valid for the latter version for which

$$v_E (\vec{s}) = G_E \delta (\vec{s}). \quad (11)$$

It has been demonstrated recently [44] that varying the value of G_E with respect to its standard value -592 MeV fm^3 from Ref. [37] down to -1040 MeV fm^3 allows to reproduce the Coulomb barrier energies resulting from the option with the finite range exchange force. Computer calculations with zero-range option are significantly faster than those ones with the finite range option. In the present paper, we apply Eqs. (9), (11) with $G_E = -1040 \text{ MeV fm}^3$.

3. Nucleon densities

In the present study, we employ two prescriptions for the nucleon densities coming from Refs. [30] and [49]. We denote them as V-densities and C-densities, respectively. In both sources [30] and [49], the density is approximated by the three-parameter Fermi formula (3pF-formula)

$$\rho_F (r) = \rho_{OF} \frac{1 - w_F r^2 / R_F^2}{1 + \exp [(r - R_F) / a_F]} . \quad (12)$$

Here R_F corresponds approximately to the half central density radius, a_F is the diffuseness, ρ_{OF} is
defined by a normalization condition. In Ref. [30], the 3pF-formula (or its version with \(w_F = 0 \) called 2pF-formula) is applied to approximate the experimental charge density (in this case the subscript \(F \) takes the value \(Vq \)). We use the same 3pF-formulas for proton (\(F = Vp \)) and neutron (\(F = Vn \)) densities for a given nucleus. The parameters \(R_{Vp}, a_{Vp}, \) and \(w_{Vp} \) of the charge density are taken from Ref. [30]. The half-density radii for protons \(R_{Vp} \) and neutrons \(R_{Vn} \) as well as \(w_{Vp} \) and \(w_{Vn} \) are taken to be equal to \(R_{Vq} \) and \(w_{Vq} \), respectively, whereas the proton and neutron diffusenesses, \(a_{Vp} \) and \(a_{Vn} \), are calculated via the charge diffuseness \(a_{Vq} \) [42, 43]:

\[
a_{Vp} = a_{Vn} = \sqrt{a_{Vq}^2 - \frac{5}{7\pi}(0.76 - 0.11 \frac{N}{Z})}.
\] (13)

We use all spherical nuclei for which Eq. (12) is available in Ref. [30]. The values of the parameters are presented in Table 1.

In Ref. [49], theoretical proton and neutron densities calculated within the Hartree–Fock–Bogolubov approach are approximated by Eq. (12) with \(w_F = 0 \). In this case, the subscript \(F \) takes the values \(Cp, Cn, \) and \(Cq \). We take \(R_{Cq} = R_{Cp} \) and

\[
a_{Cq} = \sqrt{a_{Cp}^2 + \frac{5}{7\pi}(0.76 - 0.11 \frac{N}{Z})}.
\] (14)

The values of the parameters are again presented in Table 1.

4. Results: V-densities

In Fig. 1, a, we present the calculated s-wave Coulomb barrier energies \(B_W \). These calculations are performed for four groups of the reactions induced by: \(^{16}\)O, \(^{40}\)Ca, \(^{58}\)Ni, and \(^{88}\)Sr (symbols). This allows to cover a wide range of \(B_Z = 12 \div 300 \) MeV. The line in the figure corresponds to \(B_0 = B_Z \). One sees that \(B_Z \) is indeed a good approximation for the DF M3Y barrier energies.

The fractional difference between these two quantities

\[
\xi_B = \frac{B_0}{B_Z} - 1
\] (15)

is displayed in Fig. 1, b. The symbols correspond to DF M3Y-calculations where the curve represents

| Nuc. | \(R_{Vq}, \) fm | \(w_{Vq} \) | \(a_{Vq}, \) fm | \(w_{Vp} \) | \(a_{Vp}, \) fm | \(w_{Vn} \) | \(a_{Vn}, \) fm | \(R_{Cp}, \) fm | \(a_{Cp}, \) fm | \(R_{Cn}, \) fm | \(a_{Cn}, \) fm | \(R_{Cq}, \) fm | \(a_{Cq}, \) fm |
|------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|
| \(^{16}\)O | 2.608 | -0.051 | 0.513 | 0.465 | 2.699 | 0.447 | 2.652 | 0.460 | 0.497 |
| \(^{40}\)Ar | 3.730 | -0.190 | 0.620 | 0.582 | 3.657 | 0.480 | 3.564 | 0.532 | 0.525 |
| \(^{40}\)Ca | 3.766 | -0.161 | 0.585 | 0.543 | 3.564 | 0.532 | 3.685 | 0.481 | 0.575 |
| \(^{48}\)Ca | 3.737 | -0.030 | 0.524 | 0.481 | 3.887 | 0.467 | 3.989 | 0.493 | 0.512 |
| \(^{48}\)Ti | 3.843 | 0.000 | 0.588 | 0.548 | 3.942 | 0.477 | 3.979 | 0.478 | 0.523 |
| \(^{52}\)Cr | 4.010 | 0.000 | 0.497 | 0.449 | 4.064 | 0.467 | 4.085 | 0.470 | 0.514 |
| \(^{54}\)Fe | 4.075 | 0.000 | 0.506 | 0.458 | 4.145 | 0.463 | 4.127 | 0.463 | 0.511 |
| \(^{58}\)Ni | 4.309 | -0.131 | 0.517 | 0.470 | 4.241 | 0.467 | 4.156 | 0.512 | 0.515 |
| \(^{60}\)Ni | 4.489 | -0.267 | 0.537 | 0.492 | 4.274 | 0.471 | 4.128 | 0.532 | 0.518 |
| \(^{62}\)Ni | 4.443 | -0.209 | 0.537 | 0.495 | 4.318 | 0.468 | 4.177 | 0.532 | 0.514 |
| \(^{64}\)Ni | 4.221 | 0.000 | 0.578 | 0.538 | 4.362 | 0.465 | 4.298 | 0.567 | 0.511 |
| \(^{88}\)Sr | 4.830 | 0.000 | 0.449 | 0.496 | 4.911 | 0.480 | 4.971 | 0.488 | 0.525 |
| \(^{112}\)Sn | 5.375 | 0.000 | 0.560 | 0.518 | 5.404 | 0.463 | 5.331 | 0.555 | 0.509 |
| \(^{116}\)Sn | 5.358 | 0.000 | 0.550 | 0.508 | 5.458 | 0.459 | 5.396 | 0.568 | 0.505 |
| \(^{118}\)Sn | 5.412 | 0.000 | 0.560 | 0.519 | 5.484 | 0.457 | 5.428 | 0.574 | 0.503 |
| \(^{120}\)Sn | 5.315 | 0.000 | 0.576 | 0.537 | 5.508 | 0.455 | 5.458 | 0.546 | 0.501 |
| \(^{124}\)Sn | 5.490 | 0.000 | 0.534 | 0.492 | 5.556 | 0.452 | 5.570 | 0.552 | 0.497 |
| \(^{142}\)Nd | 5.774 | 0.000 | 0.513 | 0.468 | 5.872 | 0.466 | 5.865 | 0.534 | 0.511 |
| \(^{148}\)Sm | 5.771 | 0.000 | 0.596 | 0.558 | 5.954 | 0.472 | 5.936 | 0.557 | 0.517 |
| \(^{206}\)Pb | 6.610 | 0.000 | 0.545 | 0.504 | 6.680 | 0.466 | 6.699 | 0.554 | 0.511 |
the following approximation

\[\xi_{BV} = 0.106 - 0.219 \cdot \exp \left(-\frac{B_Z}{16.1 \text{ MeV}} \right) - 0.230 \cdot \exp \left(-\frac{B_Z}{206 \text{ MeV}} \right). \] (16)

Let us go over to the stiffness of the barrier, \(C_{B0} \). The calculated values are shown by symbols in Fig. 2, \(a \), their linear fit reads

\[C_{B0V} = -0.755 \text{ MeV} - 0.0494 B_Z \] (18)

(line in Fig. 2, \(a \)). Accuracy of this fit is typically within 10\% (see Fig. 2, \(b \)) although for lighter reactions it reaches \(-20\%\) due to smaller values of the stiffness.

The calculated barrier radii versus \(B_Z \) are shown by symbols in Fig. 3, \(a \). However, their dependence upon \(\frac{A_1}{3} P + \frac{A_1}{3} T \) is simpler and more regular (see Fig. 3, \(b \)). The linear fit of this dependence reads

\[R_{B0V} / \text{fm} = 3.89 + 0.918 \left(\frac{A^{1/3}}{P} + \frac{A^{1/3}}{T} \right) \] (19)

(line in Fig. 3, \(b \)). Typical error of this fit is within 2\% (see Fig. 3, \(c \)).
5. Results: C-densities

The same procedure, as in Sec. 4, was performed for C-densities. Results are shown in Figs. 4–6. The approximate formulas read

\[\xi_{BC} = 0.0591 - 0.212 \cdot \exp\left(\frac{-B_Z}{16.1 \text{ MeV}}\right) - 0.197 \cdot \exp\left(\frac{-B_Z}{155 \text{ MeV}}\right), \]

\[C_{BC} = -0.752 \text{ MeV} - 0.04648B_Z, \]

\[R_{B0V}^2 / \text{fm} = 3.80 + 0.95 \left(A_p^{1/3} + A_T^{1/3} \right) \]

The quality of the fits is approximately as for the case of V-densities (see Figs. 4, c, 5, c, 6, c). These three approximations for the characteristics of the s-wave Coulomb barrier obtained for V- and C-densities are compared in Fig. 7. Obviously, the trends for two versions of densities coincide with each other in all three panels. As reactions become heavier, the difference appears to be more significant. Although the pairs of curves are close to each other in Fig. 7, one should remember that several percent difference in the barrier energy might influence the fusion cross section substantially, especially for the near- and sub-barrier energies.
Fig. 5. Same as in Fig. 2 but for C-densities. The line in panel (a) corresponds to Eq. (21) (color online).

Fig. 6. Same as in Fig. 3 but for C-densities. The line in panel (b) corresponds to Eq. (22) (color online).

Fig. 7. Comparison between the approximations for the barrier characteristics obtained with V- and C-densities: (a) barrier energies B_0 (see Eqs. (16) and (20)), (b) barrier curvatures C_{B0} (see Eqs. (18) and (21)), and (c) barrier radii R_{B0} (see Eqs. (19) and (22)) (color online).
6. Conclusions

In the literature, every now and again, the spherical heavy-ion capture cross sections are evaluated using the characteristics of the s-wave barrier: its energy, radius, and stiffness. In the present work, we have calculated these quantities systematically within the framework of the double-folding (DF) model. In these calculations, for the effective nucleon-nucleon forces the M3Y Paris forces with zero-range exchange part have been used. The amplitude of this part has been modified to reproduce the barrier energy obtained with the density-dependent finite-range exchange part. For the nucleon density, two options have been used. The first one (V-option) is based on the experimental charge densities. The second one (C-option) has come from the IAEA data base.

For both options, the analytical approximations have been obtained for three quantities required for evaluation of the capture cross sections within the barrier penetration model (parabolic barrier approximation). The comparison of the V- and C-approximations demonstrates that those are not very different. The proposed approximations can be used by everyone for fast estimation of the capture cross sections in the collision of two spherical complex nuclei.

We would like to stress that in the literature there are many recipes for crucial ingredients of the DF model, namely the effective NN-forces and nucleon densities. For instance, in the literature sometimes the Reid M3Y forces [36] are used although in Ref. [37] it is clearly stated that “The Reid soft-core potential is based on earlier and partially erroneous phase-shift data”. The Migdal forces were used successfully in quantum diffusion model [41, 50, 51], however for this aim very special nucleon densities were employed. Application of the Migdal forces with densities coming from the Hartree-Fock SKX calculations [52] results in cross sections which do not leave any room for dissipation of collective energy [53]. We believe that the versions of NN-forces and densities used in the present work are the best which are available in the literature for systematic calculations. At the time being, we do not see any arguments allowing to prefer C- or V-option of the densities.

Of course, one would like to see an application of the proposed approximation for the analysis of experimental cross sections as well as a numerical analysis of the accuracy of approximate formulas (3) and (4). However, this would make the present paper unjustifiably long and would distract the attention of the reader. We hope to complete such study in near future.

References

11. Zagrebaev V. I., Aritomo Y., Itkis M. G., Oganessian Yu. Ts., Ohta M. Synthesis of superheavy nuclei:
1. I. I. Gontchar et al. Systematics of the Coulomb barrier characteristics

Поступила в редакцию 02.01.2023; одобрена после рецензирования 26.01.2023; принята к публикации 03.02.2023
The article was submitted 02.01.2023; approved after reviewing 26.01.2023; accepted for publication 03.02.2023