Для цитирования:
Кречет В. Г., Ошурко В. Б., Киссер А. Э. О свойствах стационарных конфигураций вращающейся самогравитирующей идеальной жидкости с вихревым гравитационным полем // Известия Саратовского университета. Новая серия. Серия: Физика. 2025. Т. 25, вып. 4. С. 396-407. DOI: 10.18500/1817-3020-2025-25-4-396-407, EDN: FIWRDU
О свойствах стационарных конфигураций вращающейся самогравитирующей идеальной жидкости с вихревым гравитационным полем
В рамках общерелятивистской теории гравитации Эйнштейна, т. е. общей теории относительности (ОТО), рассматриваются свойства стационарных распределений самогравитирующей вращающейся сплошной среды в виде идеальной жидкости с баротропным уравнением состояния p = wε, w = const, где p – давление, а ε – плотность энергии идеальной жидкости. Стационарное пространство-время, совместимое с наличием самогравитирующей вращающейся сплошной среды, описывается стационарной цилиндрически-симметричной метрикой, соответствующей пространству-времени с вращением, в котором наличествует вихревое гравитационное поле. Для исследования свойств рассматриваемых вращающихся конфигураций самогравитирующей идеальной жидкости и вихревого гравитационного поля решаются соответствующие гравитационные уравнения Эйнштейна. Некоторые из полученных решений описывают геометрию пространства-времени «кротовых нор» – своеобразных тоннелей в пространстве-времени, соединяющих отдаленные области Вселенной или же параллельные Вселенные. Кроме того, показана возможность существования вакуумных «кротовых нор», образованных одним лишь вихревым гравитационным полем.
- Blanco-Pillado J. J., Cui Y., Kuroyanagi S., Lewicki M., Nardini G., Pieroni M., Rybak I., Lara Sousa L., Wachter J. M. Gravitational waves from cosmic strings in LISA: Reconstruction pipeline and physics interpretation. J. Cosmol. Astropart. Phys., 2025, vol. 2025, iss. 05, art. 006. https://doi.org/10.1088/1475-7516/2025/05/006
- Blasi S., Calibbi L., Mariotti A., Turbang K. Gravitational waves from cosmic strings in Froggatt-Nielsen flavour models. J. High Energy Phys., 2025, vol. 2025, iss. 5, art. 19. https://doi.org/10.1007/JHEP05(2025)019
- Öner B. B., Yeєiltaє Ö. Quantum particle creation by cosmic strings in de Sitter spacetime. Class. Quant. Grav., 2025, vol. 42, iss. 9, art. 095001. https://doi.org/10.1088/1361-6382/adcb12
- Algaba J. C., Balokoviж M., Chandra S., Cheong W.-Y., Cui Y.-Z., D’Ammando F., Falcone A. D., Ford N. M., Giroletti M., Goddi C., Gurwell M. A., Hada K., Haggard D., Jorstad S., Kaur A., Kawashima T., Kerby S., Kim J.-Y., Kino M., Kravchenko E. V. [et al.]. Broadband multi-wavelength properties of M87 during the 2018 EHT campaign including a very high energy flaring episode. Astron. Astrophys., 2024, vol. 692, art. A140. https://doi.org/10.1051/0004-6361/202450497
- Kiehlmann S., de la Parra P. V., Sullivan A. G., Synani A., Liodakis I., Readhead A. C. S., Graham M. J., Begelman M. C., Blandford R. D., Chatziioannou K., Ding Y., Harrison F., Homan D. C., Hovatta T., Kulkarni S. R., Lister M. L., Maiolino R., Max-Moerbeck W., Molina B., Mróz P. [et al.]. PKS 2131–021 – Discovery of strong coherent sinusoidal variations from radio to optical frequencies: Compelling evidence for a blazar supermassive black hole binary. Astrophys. J., 2025, vol. 985, iss. 1, art. 59. https://doi.org/10.3847/1538-4357/adc567
- Seo J., Ryu D., Kang H. Energy Spectrum and Mass Composition of Ultra-high-energy Cosmic Rays Originating from Relativistic Jets of Nearby Radio Galaxies. Astrophys. J., 2025, vol. 988, iss. 2, art. 194. https://doi.org/10.3847/1538-4357/ade678
- Birch P. Is the Universe rotating? Nature, 1982, vol. 298, iss. 5873, pp. 451–454. https://doi.org/10.1038/298451a0
- Monteiro S. W. Jr., Tomimura N. A. Existence and causality of cylindrically symmetric cosmological models with rotating spin fluids. Class. Quant. Grav., 1991, vol. 8, iss. 5, pp. 977–984. https://doi.org/10.1088/0264-9381/8/5/021
- Mishra B., Vadrevu S. Cylindrically symmetric cosmological model of the universe in modified gravity. Astrophys. Sp. Sci., 2017, vol. 362, iss. 2, art. 26. https://doi.org/10.1007/s10509-017-3006-2
- Panov V. F., Pavelkin V. N., Kuvshinova E. V., Sandakova O. V. Kosmologiya s vrashcheniem [Cosmology with rotation]. Perm, Perm State University Publ., 2016. 224 p. (in Russian).
- Krechet V. G., Oshurko V. B., Kisser A. E. Stationary Rotating Cosmological Model Without Violation of the Causal Structure. Russ. Phys. J., 2022, vol. 65, iss. 6, pp. 937–943. https://doi.org/10.1007/s11182-022-02716-z
- Su S.-C., Chu M-C. Is the Universe Rotating? Astrophys. J., 2009, vol. 703, iss. 1, pp. 354–361. https://doi.org/10.1088/0004-637X/703/1/354
- Godіowski W. Global and Local Effects of Rotation: Observational Aspects. Int. J. Mod. Phys. D, 2011, vol. 20, iss. 09, pp. 1643–1673. https://doi.org/10.1142/S0218271811019475
- Korotky V. A., Masár E., Obukhov Y. N. In the quest for cosmic rotation. Universe, 2020, vol. 6, iss. 1, art. 14. https://doi.org/10.3390/universe6010014
- Morris M. S., Thorne K. S., Yurtsever U. Wormholes, time machines and the weak energy condition. Phys. Rev. Lett., 1988, vol. 61, iss. 13, pp. 1446–1449. https://doi.org/10.1103/PhysRevLett.61.1446
- Morris M. S., Thorne K. S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Amer. J. Phys., 1988, vol. 56, iss. 5, pp. 395–412. https://doi.org/10.1119/1.15620
- Krechet V. G. Topological and physical effects of rotation and spin in the general relativistic theory of gravitation. Russ. Phys. J., 2007, vol. 50, iss. 10, pp. 1021–1025. https://doi.org/10.1007/s11182-007-0147-8
- Krechet V. G., Sadovnikov D. V. Spin-spin interaction in general relativity and induced geometries with nontrivial topology. Grav. Cosmol., 2009, vol. 15, iss. 4, pp. 337–340. https://doi.org/10.1134/S0202289309040082
- Novikov I. D., Shatskiy A. A. Stability analysis of a Morris-Thorne-Bronnikov-Ellis wormhole with pressure. J. Exp. Theor. Phys., 2012, vol. 114, iss. 5, pp. 801–804. https://doi.org/10.1134/S1063776112040127
- Bronnikov K. A., Krechet V. G., Lemos J. P. S. Rotating cylindrical wormholes. Phys. Rev. D, 2013, vol. 87, iss. 8, art. 084060. https://doi.org/10.1103/PhysRevD.87.084060
- Bronnikov K. A., Krechet V. G. Potentially observable cylindrical wormholes without exotic matter in general relativity. Phys. Rev. D, 2019, vol. 99, iss. 8, art. 084051. https://doi.org/10.1103/PhysRevD.99.084051
- Bronnikov K. A., Sushkov S. V. Current Problems and Recent Advances in Wormhole Physics. Universe, 2023, vol. 9, iss. 2, art. 81. https://doi.org/10.3390/universe9020081
- Bronnikov K. A., Kashargin P. E., Sushkov S. V. Possible Wormholes in a Friedmann Universe. Universe, 2023, vol. 9, iss. 11, art. 465. https://doi.org/10.3390/universe9110465
- Bolokhov S. V., Skvortsova M. Correspondence between quasinormal modes and grey-body factors of spherically symmetric traversable wormholes. J. Cosmol. Astropart. Phys., 2025, vol. 2025, iss. 04, art. 025. https://doi.org/10.1088/1475-7516/2025/04/025
- Bolokhov S. V., Konoplya R. A. Circumventing quantum gravity: Black holes evaporating into macroscopic wormholes. Phys. Rev. D, 2025, vol. 111, iss. 6, art. 064007. https://doi.org/10.1103/PhysRevD.111.064007
- Hoenselaers C., Vishveshwara C. V. A relativistically rotating fluid cylinder. Gen. Rel. Grav., 1979, vol. 10, iss. 1, pp. 43–51. https://doi.org/10.1007/BF00757022
- Santos N. O., Mondaini R. P. Rigidly rotating relativistic generalized dust cylinder. Il Nuovo Cimento B, 1982, vol. 72, iss. 1, pp. 13–20. https://doi.org/10.1007/BF02894930
- Davidson W. Barotropic perfect fluid in steady cylindrically symmetric rotation. Class. Quant. Grav., 1997, vol. 14, iss. 1, pp. 119–127. https://doi.org/10.1088/0264-9381/14/1/013
- Ivanov B. V. On rigidly rotating perfect fluid cylinders. Class. Quant. Grav., 2002, vol. 19, iss. 14, pp. 3851–861. https://doi.org/10.1088/0264-9381/19/14/323
- Ivanov B. V. Rigidly rotating cylinders of charged dust. Class. Quant. Grav., 2002, vol. 19, iss. 20, pp. 5131–5139. https://doi.org/10.1088/0264-9381/19/20/307
- Bonnor W. B., Steadman B. R. A vacuum exterior to Maitra’s cylindrical dust solution. Gen. Rel. Grav., 2009, vol. 41, iss. 6, pp. 1381–1387. https://doi.org/10.1007/s10714-008-0725-2
- Bolokhov S. V., Bronnikov K. A., Skvortsova M. V. Rotating Cylinders with Anisotropic Fluids in General Relativity. Grav. Cosmol., 2019, vol. 25, iss. 2, pp. 122–130. https://doi.org/10.1134/S020228931902004X
- Krechet V. G., Oshurko V. B., Baidin A. E. On the Properties of Stationary Distributions of Gravitational Vortex Fields and Continuous Media. Russ. Phys. J., 2020, vol. 63, iss. 6, pp. 1045–1054. https://doi.org/10.1007/s11182-020-02135-y
- Krechet V. G., Oshurko V. B., Baidin A. E. Gravitational and Electromagnetic Effects in the Configuration of a Rotating Electrically Charged Ideal Liquid. Russ. Phys. J., 2022, vol. 65, iss. 3, pp. 410–422. https://doi.org/10.1007/s11182-022-02649-7
- Krechet V. G., Oshurko V. B., Sinil’shchikova I. V. On the possible existence of wormholes without gravitational forces. Russ. Phys. J., 2016, vol. 59, iss. 1, pp. 32–40. https://doi.org/10.1007/s11182-016-0735-6
- Luminet J.-P. Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to chronological protection. Universe, 2021, vol. 7, iss. 1, art. 12. https://doi.org/10.3390/universe7010012
- Nguyen H. K., Lobo F. S. N. Closed Timelike Curves Induced by a Buchdahl-Inspired Vacuum Spacetime in R2 Gravity. Universe, 2023, vol. 9, iss. 11, art. 467. https://doi.org/10.3390/universe9110467
- Ahmed F., de Souza J. C. R., Santos A. F. Vacuum spacetime with closed time-like curves in the context of Ricci-inverse gravity. Mod. Phys. Lett. A, 2025, vol. 40, iss. 4, art. 2450221. https://doi.org/10.1142/S0217732324502213
- Landau L. D., Lifshitz E. M. Course of Theoretical Physics: in 10 vols. Vol. 2. The Classical Theory of Fields: 4th edition. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, Butterworth-Heinemann, 1980. 444 p.
- CERN Press Release: New State of Matter created at CERN, Feb. 10, 2000. Available at: https://home.cern/news/press-release/cern/new-state-matter-created-cern (accessed September 21, 2025)
- Tannenbaum M. J. Recent results in relativistic heavy ion collisions: From a new state of matter to the perfect fluid. Rep. Prog. Phys., 2006, vol. 69, iss. 7, pp. 2005–2059. https://doi.org/10.1088/0034-4885/69/7/R01
- Heinz U. Quark-gluon soup – The perfectly liquid phase of QCD. Int. J. Mod. Phys. A, 2015, vol. 30, iss. 2, art. 1530011. https://doi.org/10.1142/S0217751X15300112
- 84 просмотра