Для цитирования:
Mordovina E. A., Berdenkova V. A., Bakal A. A., Tsyupka D. V., Kokorina A. A., Podkolodnaya Y. A., Goryacheva O. A., Goryacheva I. Y. Fluorescent nanosized PAMAM dendrimers: One-step formation of a bright blue fluorophore on terminal groups and its optical properties [Мордовина Е. А., Бакал В. А., Бакал А. А., Цюпка Д. В., Кокорина А. А., Подколодная Ю. А., Горячева О. А., Горячева И. Ю. Флуоресцентные наноразмерные дендримеры ПАМАМ: одностадийное образование ярко-синего флуорофора на концевых группах и его оптические свойства] // Известия Саратовского университета. Новая серия. Серия: Физика. 2023. Т. 23, вып. 2. С. 150-156. DOI: 10.18500/1817-3020-2023-23-2-150-156, EDN: MVEHVR
Fluorescent nanosized PAMAM dendrimers: One-step formation of a bright blue fluorophore on terminal groups and its optical properties
[Флуоресцентные наноразмерные дендримеры ПАМАМ: одностадийное образование ярко-синего флуорофора на концевых группах и его оптические свойства]
Полиамидоаминовые дендримеры (ПАМАМ) представляют собой наноразмерные монодисперсные соединения с многофункциональной концевой поверхностью. Структурные особенности ПАМАМ, такие как наноразмерность высокой однородности, сильно развитая концевая поверхность и полости в структуре, открывают широкие возможности для их применения. Наиболее интересным является использование ПАМАМ в биомедицинских целях, в частности для адресной доставки лекарственных препаратов (например, противоопухолевых). Взаимодействие ПАМАМ с клетками-мишенями можно оценить с помощью флуоресцентной визуализации. Это предполагает предварительную модификацию ПАМАМ различными флуоресцентными молекулами или разработку подходов для увеличения собственной флуоресценции ПАМАМ. В данной работе предложена и реализована одностадийная модификация ПАМАМ ярко-синим флуорофором (1,2,3,5-тетрагидро-5-оксо-имидазо[1,2-а] пиридин-7-карбоновая кислота, ИПКК), который образуется в результате реакции двойной циклизации концевых групп ПАМАМ и лимонной кислоты. Показано, что в результате модификации гидродинамический радиус ПАМАМ не изменяется, значительно увеличивается интенсивность флуоресценции (квантовый выход увеличивается с <1 до 28 %), ζ-потенциал изменяется с 42 ± 5 до −24 ± 4 мВ.
- Araújo R. V., Santos S. S., Ferreira E. I., Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018, vol. 23, no. 11, article no. 2849. https://doi.org/10.3390/molecules23112849
- Xu X., Li J., Han S., Tao C., Fang L., Sun Y., Zhu J., Liang Z., Li F. A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reducing PAMAM toxicity and boosting BBB penetration. European Journal of Pharmaceutical Sciences, 2016, vol. 88, pp. 178–190. https://doi.org/10.1016/j.ejps.2016.02.015
- Tomalia D. A., Reyna L. A., Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans., 2007, vol. 35, pp. 61–67. https://doi.org/10.1042/BST0350061
- Parsian M., Mutlu P., Yalcin S., Tezcaner A., Gunduz U. Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery. International Journal of Pharmaceutics, 2016, vol. 515, pp. 104–113. https://doi.org/10.1016/j.ijpharm.2016.10.015
- Santos S., Ferreira E., Giarolla J. Dendrimer prodrugs. Molecules, 2016, vol. 21, article no. 686. https://doi.org/10.3390/molecules21060686
- Srinageshwar B., Peruzzaro S., Andrews M., Johnson K., Hietpas A., Clark B., McGuire C., Petersen E., Kippe J., Stewart A., Lossia O., Al-Gharaibeh A., Antcliff A., Culver R., Swanson D., Dunbar G., Sharma A., Rossignol J. PAMAM dendrimers cross the blood–brain barrier when administered through the carotid artery in C57BL/6J mice. International Journal of Molecular Sciences, 2017, vol. 18, article no. 628. https://doi.org/10.3390/ijms18030628
- Wen S., Liu H., Cai H., Shen M., Shi X. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multiwalled carbon nanotubes. Advanced Healthcare Materials, 2013, vol. 2, no. 9, pp. 1267–1276. https://doi.org/10.1002/adhm.201200389
- Siafaka P. I., Üstündaр N., Karavas E., Bikiaris D. N. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. International Journal of Molecular Sciences, 2016, vol. 17, no. 9, article no. 1440. https://doi.org/10.3390/ijms17091440
- Fu F., Wu Y., Zhu J., Wen S., Shen M., Shi X. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Applied Materials & Interfaces, 2014, vol. 6, no. 18, pp. 16416–16425. https://doi.org/10.1021/am504849x
- Tsyupka D. V., Mordovina E. A., Sindeeva O. A., Sapelkin A. V., Sukhorukov G. B., Goryacheva I. Y. High-fluorescent product of folic acid photodegradation: Optical properties and cell effect. J. Photochem. Photobiol. A, 2021, vol. 407, article no. 113045. https://doi.org/10.1016/j.jphotochem.2020.113045
- Venditto V. J., Regino C. A. S., Brechbiel M. W. PAMAM dendrimer based macromolecules as improved contrast agents. Molecular Pharmaceutics, 2005, vol. 2, no. 4, pp. 302–311. https://doi.org/10.1021/mp050019e
- Wang D., Imae T. Fluorescence emission from dendrimers and its pH dependence. Journal of the American Chemical Society, 2004, vol. 126, no. 41, article no. 13204–13205. https://doi.org/10.1021/ja0454992
- Golshan M., Gheitarani B., Salami-Kalajahi M., Hosseini M. S. Synthesis and characterization of fluorescence poly (amidoamine) dendrimer-based pigments. Scientific Reports, 2022, vol. 12, pp. 15180. https://doi.org/10.1038/s41598-022-19712-5
- Camacho C. S. Urgellés M., Tomás H., Lahoz F., Rodrigues J. New insights into the blue intrinsic fluorescence of oxidized PAMAM dendrimers considering their use as bionanomaterials. Journal of Materials Chemistry B, 2020, vol. 8, no. 45, pp. 10314–10326. https://doi.org/10.1039/D0TB01871F
- Liang C., Huang J. F., Luo H., Sun D., Baker G. A., Dai S. Hydrophobic Bronsted Acid-Base Ionic Liquids Based on PAMAM Dendrimers with High Proton Conductivity and Blue Photoluminescence. Journal of the American Chemical Society, 2005, vol. 127, no. 37. pp. 12784–12785. https://doi.org/10.1021/ja053965x
- Jasmine M. J., Kavitha M., Prasad E. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers. Journal of Luminescence, 2009, vol. 129, no. 5, pp. 506–513. https://doi.org/10.1016/j.jlumin.2008.12.005
- Song Y., Zhu S., Zhang S., Fu Y., Wang L., Zhao X., Yang B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 2015, vol. 3, no. 23, pp. 5976–5984. https://doi.org/10.1039/C5TC00813A
- Kasprzyk W., Bednarz S., Żmudzki P., Galica M., Bogdaі D. Novel efficient fluorophores synthesized from citric acid. RSC Advances, 2015, vol. 5, no. 44, pp. 34795–34799. https://doi.org/10.1039/c5ra03226a
- Kokorina A. A., Bakal A. A., Shpuntova D. V., Kostritskiy A. Y., Beloglazova N. V., Saeger S. De, Sukhorukov G. B., Sapelkin A. V., Goryacheva I. Y. Gel electrophoresis separation and origins of light emission in fluorophores prepared from citric acid and ethylenediamine. Scientific Reports, 2019, vol. 9, no. 1, article no. 14665. https://doi.org/10.1038/s41598-019-50922-6
- Podkolodnaya Y. A., Kokorina A. A., Goryacheva I. Y. A Facile Approach to the Hydrothermal Synthesis of Silica Nanoparticle/Carbon Nanostructure Luminescent Composites. Materials, 2022, vol. 15, no. 23, article no. 8469. https://doi.org/10.3390/ma15238469
- Mukherjee S. P., Davoren M., Byrne H. J. In vitro mammalian cytotoxicological study of PAMAM dendrimers–towards quantitative structure activity relationships. Toxicology In Vitro, 2010, vol. 24, pp. 169–177. https://doi.org/10.1016/j.tiv.2009.09.014
- Dobrovolskaia M. A., Patri A. K., Simak J., Hall J. B., Semberova J. De Paoli Lacerda S. H., McNeil S. E. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Molecular Pharmaceutics, 2012, vol. 9, no. 3, pp. 382–393. https://doi.org/10.1021/mp200463e
- Fox L. J., Richardson R. M., Briscoe W. H. PAMAM dendrimer-cell membrane interactions. Advances in Colloid and Interface Science, 2018, vol. 257, pp. 1–18. https://doi.org/10.1016/j.cis.2018.06.0050001-8686
- 721 просмотр