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Abstract. Background and Objectives: Polyamidoamine dendrimers (PAMAM) are nanoscale monodisperse compounds with a multifunctional
terminal surface. Structural features of PAMAM, such as a nanosize of high homogeneity, highly developed terminal surface and cavities in the
structure open up wide possibilities for their application. The most promising use of PAMAM is for biomedical purposes, in particular for the
targeted drug delivery (for example, anticancer drugs). The interaction of PAMAM with target cells can be assessed using fluorescent imaging.
This suggests the preliminary modification of PAMAM with various fluorescent molecules or the development of approaches to increase the
intrinsic fluorescence of PAMAM. Materials and Methods: In this paper, we will consider a one-step modification of PAMAM based on the double
cyclization reaction of PAMAM terminal groups and citric acid. Two approaches are chosen for modification: hydrothermal and boiling methods.
The methods of optical spectroscopy and dynamic light scattering will be used as the main research tools. The methods used make it possible
to determine the efficiency of fluorophore formation under given conditions. Results: In this work, we have proposed and implemented a one-
step modification of PAMAM with a bright blue fluorophore (1,2,3,5-tetrahydro-5-oxo-imidazo[1,2-a] pyridine-7-carboxylic acid, IPCA), which
is formed by a double cyclization reaction between citric acid and terminal ethylenediamine fragments of PAMAM. It has been shown that as a
result of modification the hydrodynamic diameter of PAMAM does not change, the fluorescence intensity increases significantly (the quantum
yield increases from < 1 to 28%), {-potential changes from 42 + 5 to —24 + 4 mV. Conclusion: Reaction of PAMAM and citric acid leads to
the appearance of bright-blue fluorescence, which is significantly higher than the intrinsic fluorescence of PAMAM. A combination of bright
fluorescence and a multifunctional terminal surface make it possible to further use the obtained structures for biovisualization
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E. A. Mordovina et al. Fluorescent nanosized PAMAM dendrimers

AnHoTauus. MonnamugoamuHosble geHapumepbl (MAMAM) npeacTaBasioT C060i HaHOpa3MepHble MOHOAMCNEPCHbIE COeAMHEHNS C MHOrO-
(YHKUMOHaNbHON KOHLLEBOW NOBEPXHOCTbH. CTPYKTYpHbIe 0cobeHHocTH TAMAM, Takue Kak HaHOPa3MepHOCTb BbICOKOI# OAHOPOAHOCTH, CUAb-
HO pa3BuTas KOHLieBas NOBEPXHOCTL M MONOCTH B CTPYKTYPe, OTKPLIBAIOT LWMPOKME BO3MOXHOCTH NS UX NPUMeHeHNs. Hanbonee nHTepecHbIM
ABNSeTCa ucnonb3osanue MAMAM B 61MOMEAVLIMHCKX LiENAX, B YaCTHOCTI A5 aAPECHOIl 0CTaBKV NiekapCTBEHHbIX MpenapatoB (Hanpumep,
npoTueoonyxonesbix). B3aumogeiicteue NMAMAM ¢ KneTKaMu-MULLEHAMU MOXHO OLLeHMTb C NOMOLLbI GyopecLeHTHOI BU3yanusaLuu. 31o
npeAnonaraet npegsapuTensHyto Mogudmkaumio MAMAM pasnnyHbIMU GnyopecLieHTHBIMW MOSeKyaMu N pa3paboTky NoAXoA0B AN yBe-
NNYeHNs CobCTBeHHOI GnyopecueHuymn MAMAM. B gaHHoI paboTe npegoxeHa v peann3oBaHa ogHocTaguiiHas mogudukaums MNAMAM sipko-
cuHum dnyopodopom (1,2,3,5-Tetparnapo-5-okco-ummngasol 1,2-a] nupuanH-7-kapboosas kucnota, UMKK), kotopbiii 06pasyetcs B pe3ynbTa-
Te peaKLu ABOIAHON LnKnn3aLmm KoHuesbix rpynn MAMAM v iuMOHHO KucnoTbl. MoKasaHo, uTo B pesynbTate MOAUGUKALMM TMAPOAUHE-
Muyeckmii paguyc MAMAM He 3MEHSETCA, 3HAUMTENbHO YBEIMUYMBAETCS MHTEHCUBHOCTL (AyopecLieHL M (KBAHTOBbIN BbIXOZ YBENMUNBALTCA
¢ <1 po 28 %), {-noteHuman usmensietcs ¢ 42 +5 o —24 + 4 mB.
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1. Introduction the development of functional PAMAM derivatives,

Polyamidoamine dendrimers (PAMAM) are
hyperbranched polymers with molecular unifor-
mity, defined size and shape characteristics and a
multifunctional terminal surface. These nanoscale
polymers consist of an ethylenediamine core, a
repetitive branching amidoamine internal structure
and a primary amine terminal surface. Dendrimers
are “grown” off a central core in an iterative
manufacturing process, with each subsequent step

representing a new “generation” of dendrimer.

Increasing dendrimer generation produces larger
molecular diameters and molecular weight, as well
as an enhancement of reactive surface areas, which

are functional keys to use of PAMAM dendrimers.

PAMAM of low generations exhibit almost linear
geometry, later generations show more globular-
like shapes (G4.0 and above) [1]. The cavities that
are intrinsically present in the globular shapes of
PAMAM make them suitable agents for encapsu-
lating and adsorbing biomolecules [2-4], and for
use as prodrugs [5]. The ability of PAMAM to
cross the blood-brain barrier makes their application
for targeted antitumor therapy very promising [2,
6]. Perspectives of biomedical applications boost
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that combines intrinsic PAMAM carrier properties
and functionality of modifiers: targeting ligands
that provide address delivery [3, 7—10]; fluorescent
molecules [7, 9] and/or contrast agents [3, 11] to
simplify visualization of the target area by fluores-
cence and/or magnetic resonance contrast. As a
rule, approaches to PAMAM surface modification
are multi-stage and labor-intensive, which necessi-
tates the development of simpler methods.

PAMAM dendrimers have very low intrinsic
fluorescence (quantum yield < 1%), which limits
their use for biomedical imaging, since the contrast
between PAMAM fluorescence and cell autofluo-
rescence is minimal [12—-14]. Despite the existing
approaches to increasing the intrinsic fluorescence
of PAMAM (for example, oxidative treatment [14],
acid-base transformation reactions [15] and solvent-
induced PAMAM aggregation [16]), surface modifi-
cation with fluorescent molecules is more effective
[7-9].

In this work, we report the possibility to
use terminal fragments of ethylenediamine of
PAMAM G4.0 for reaction with citric acid (CA)
to obtain PAMAM derivative (PAMAM-CA) with
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bright blue fluorescence. This approach is based
on the previously well described interaction of
CA and amine -containing agents, particularly,
1,2-ethylenediamine (EDA), which produces a
bright blue fluorophore (1,2,3,5-tetrahydro-5-oxo-
imidazo[1,2-a] pyridine-7-carboxylic acid, IPCA)
as a result of the double cyclization reaction (Fig. 1).
This reaction has already been considered for EDA
and its low molecular weight derivatives [17—-19], as
well as for surface modification of silica nanopar-
ticles with terminal amino groups [20], but has
never been used to modify PAMAM. Thus, we
describe two options for a simple one-step modifica-
tion of PAMAM G4.0 with a bright blue fluorophore
(IPCA) as a result of the reaction between the ter-
minal fragments of PAMAM and CA; and study
the properties of the modified PAMAM. The use
of boiling under reflux at atmospheric pressure and
hydrothermal treatment made it possible to obtain
the modified fluorescent PAMAM with identical

352 ey 3
N\/\NH R

characteristics. This is promising for creating drug
delivery systems with the possibility of fluorescent
visualization.

2. Experimental section

2.1. Modification PAMAM with a bright blue
fluorophore (IPCA)

Two approaches of treatment of PAMAM and
CA aqueous solutions were chosen for the PAMAM
modification: boiling under reflux at atmospheric
pressure and hydrothermal treatment in a closed vol-
ume (Fig. 2).

To modify PAMAM, a 10 wt.% solution of
PAMAM G 4.0 in methanol was mixed with an
aqueous solution of CA. The molar ratio of the
reagents was 1: 64 and the resulting concentrations
were 7-107° and 4.5- 1073 mol/l for PAMAM and
CA, respectively. For the boiling method, 10 ml
of the resulting solution was transferred to a round

Seihiest

IPCA

Fig. 1. Scheme of the formation mechanism of IPCA molecular fluorophore from CA and EDA-derived compound [18-20]

PAMAM G4.0

Citric acid

Daylight UV light

Stainless-steel
autoclave

Bright Blue Fluorophore
(IPCA)

Fig. 2. Scheme of PAMAM modification with a bright blue fluorophore: Boiling under reflux (left) and hydrothermal treatment
(right) (color online)

152

HayuHbivi oTgen



E. A. Mordovina et al. Fluorescent nanosized PAMAM dendrimers

B

bottom flask connected to a reflux condenser and
heated to 100°C for 4 hours (Fig. 2, left; boiling at
atmospheric pressure). For the hydrothermal treat-
ment, 4 ml of the resulting solution was transferred
into a glass beaker inside a teflon-lined stainless-
steel autoclave and heated at 120°C for 4 hours
(Fig. 2, right; hydrothermal treatment). As a result
of hydrothermal treatment of aqueous solutions, an
increased pressure is created (~200 kPa a tempera-
ture of 120°C).

2.2. Characterization of samples

Absorption spectra were recorded by Shimadzu
UV-1800 (Shimadzu Corporation, Kyoto, Japan).
Emission and excitation spectra were obtained by
a Cary Eclipse spectrometer (Agilent Technologies,
Mulgrave, Victoria, Australia). The average diame-
ter and zeta-potential ({-potential) of samples were
analyzed with a Zetasizer Ultra (Malvern Panalyti-
cal, Worcestershire, UK).

2.3. Quantum yield calculation

Calculation of the quantum yield (QY) allows
one to estimate the efficiency of emission. The rel-
ative QY of samples was calculated using quinine
sulfate in 0.05 mol/l H,SO, as a reference. The QY
was calculated with the following equation:

q)x = cI)st ' (AX/ASI) . (FSI/FX) . (n/no)za

where @ is QY, A is absorbance at the excitation
wavelength, F is the integrated emission area across
the band, and » is the refractive index of the sol-
vent containing the samples (n) and the reference
(n,). The subscript “st” refers to the referenced flu-
orophore (quinine sulfate in 0.05 mol/l HSO,) with
known QY and “x” refers as the samples for the
determination of QY. Absorbance of the sample and
the reference was kept 0.100+0.002 at the excitation
wavelength of 350 nm.

3. Results and Discussion

For PAMAM modification, we applied two op-
tions for a simple one-step modification, which is
based on the double cyclization reaction between
the terminal fragments of PAMAM and CA (the
schemes in Figs. 1 and 2). We considered different
data while choosing an optimal temperature for the
hydrothermal treatment of PAMAM mixture with
CA. As previously reported, the formation of IPCA
occurs at lower temperatures (100-150°C) than the
formation of by-products of carbonization of CA
and amine-containing agents. However, the yield of
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the product increases significantly with increasing
synthesis temperature [17]. On the other hand, the
possibility of PAMAM degradation with an increase
of in temperature >120°C [15] demands limitation
of the synthesis temperature. Thus, for the PAMAM
modification, a temperature 120°C was used.

The absorption, excitation and normalized
emission spectra of freshly prepared PAMAM aqua
solutions are shown in Fig. 3, a. The absorption
band of PAMAM is observed at 285 nm. The emis-
sion maximum of PAMAM is located in the region
of 400 nm, while the effective excitation wave-
length is 320 nm. The PAMAM fluorescence is
a result of the dendrimers’ structural peculiarities,
which is caused an n — ©* transition from the amido
groups throughout the dendritic structure [13]. To
exclude an increase in the PAMAM fluorescence
under the action of thermal treatment and increased
pressure, an aqueous solution of PAMAM (with-
out additives) was processed under the conditions
according to the scheme in Fig. 2. The optical
properties of PAMAM, including emission inten-
sity, have not been change after both variants of heat
treatments. This clearly indicates the integrity of the
polyamidoimine structure under heating.

According to the previously described studies,
[17-20], TPCA can be obtained by the double cy-
clization reaction of CA and EDA as a result of
boiling under reflux at atmospheric pressure, but
with a small reaction yield. However, IPCA with a
higher reaction yield can be obtained using the hy-
drothermal treatment, but at the same time a larger
amount of high molecular weight by-products of
CA and/or 1,2-ethylenediamine polycondensation is
formed [17, 19]. Therefore, this approach was not
considered in our work. Absorption, excitation and
normalized emission spectra of the resulting fluo-
rophore (EDA-CA) are shown in Fig. 3, b. The
absorption band at 350 nm corresponds to T — TT* or
n — 7* transitions. The emission maximum of the
obtained structures is located in the region of 450—
455 nm, while the effective excitation wavelength
coincides with the absorption band and is 350 nm.

The use of two approaches to the modification
of PAMAM leads to products with the identical op-
tical characteristics, presented in Fig. 3, c. As a
result of the thermal treatment of PAMAM with CA,
a long-wavelength shift of the absorption band to
the region of 370 nm in comparison with PAMAM
without modification is registered. The emission
maximum of the obtained structures is located in the
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Fig. 3. Absorption (dot), excitation (dash) and normalized
emission (solid) spectra of initial PAMAM (a), reaction
product of EDA and CA (EDA-CA, IPCA) (b) and reac-
tion product of PAMAM and CA (PAMAM-CA) (c) (color

online)
region of 450-455 nm, while the effective excita-

tion wavelength coincides with the absorption band
and is 370 nm. The emission spectra of PAMAM-—
CA and EDA-CA (IPCA) are completely identical,
that confirms the formation of the fluorophore at
the terminal fragments of PAMAM. The change in
the effective excitation band in comparison with the
free fluorophore IPCA is most likely associated with

the size of the fragment (the PAMAM core) associ-
ated with the imidozolidine fragment of the IPCA
[17-20]. As a result of modification, the PAMAM
fluorescence is significantly increased compared to
PAMAM without modification.

Since there were no significant differences in
the optical properties of the samples obtained by
the two approaches, further analysis was carried out
for the samples obtained by boiling under reflux at
atmospheric pressure, because for this synthesis it
is easier to control the reproducibility of conditions.

To evaluate the efficiency of emission, the rel-
ative QY was measured (Table). The quantum yield
of the product obtained by boiling EDA and CA
(IPCA) was 57 £ 2%. After PAMAM modification
with CA, the PAMAM QY increases to 28 + 3%.
This is significantly lower than that for the free
IPCA fluorophore. This may be due to the fact that
PAMAM-bound IPCA molecules are in suboptimal
conditions compared to free IPCA molecules in so-
lution or the formation of the fluorophore does not
occur at all PAMAM terminal groups.

Dynamic light scattering data were obtained
to characterize the size and charge of the obtained
samples (Table). The hydrodynamic diameter and
C-potential of initial PAMAM was 3.4 + 0.5 nm
and 42 £ 5 mV, respectively, which is fully con-
sistent with literature data [21-23]. The positive
charge of PAMAM is due to the protonation of
the surface primary amino groups. As a result of
the PAMAM modification, there was no significant
change in the hydrodynamic size, while the {-po-
tential value was —24 + 4 mV. A dramatical change
in the {-potential of the PAMAM-CA compared to
the initial PAMAM confirms the formation of a flu-
orophore. The presence of IPCA carboxyl group on
the PAMAM surface forms a negative charge. How-
ever, for PAMAM with terminal carboxyl groups,
the potential value is —40 mV [22], which is lower
than the value obtained for the PAMAM-CA. This
confirms our assumption that the fluorophore for-
mation does not occur for all terminal groups.

Thus, the combined thermal treatment of
PAMAM and CA, leads to the formation of a bright
blue fluorophore (IPCA) at the terminal fragments

Table. Fluorescence quantum yield (QY), hydrodynamic diameter and {-potential of initial PAMAM, reaction product
of PAMAM and CA (PAMAM-CA) and reaction product of EDA and CA (EDA-CA, IPCA)

Sample QY, % Hydrodyna:rlrllc diameter, C-potential, mV
PAMAM <1[13] 3.4+0.5 42 +5
PAMAM-CA 28 £ 3 3.5+0.7 —24+4
EDA-CA (IPCA) 57 £2 - -
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of PAMAM (emission maximum at 450—-455 nm).
Boiling under reflux PAMAM with CA makes it
possible to increase the QY of fluorescence up to
28+3% from less than 1% of the initial PAMAM.
The absence of changes in the hydrodynamic diame-
ter of PAMAM-CA compared to PAMAM confirms
the integrity of the polyamidoimine core.

4. Conclusions

As a result of the work, a simple one-step ap-
proach to the modification of PAMAM with a bright
blue fluorophore (IPCA) has been proposed, which
is implemented as a result of a double cyclization
reaction between citric acid and terminal ethylenedi-
amine fragments of PAMAM. Reaction of PAMAM
and CA leads to the appearance of bright-blue fluo-
rescence with a quantum yield of 2843 %, which is
significantly higher than the intrinsic fluorescence
of PAMAM. A combination of bright fluorescence
and a multifunctional terminal surface makes it
possible to further use the obtained structures for
biovisualization.
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