Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Barkov P. V., Slepchenkov M. M., Glukhova O. E. Sensor properties of thin films of perforated graphene functionalized with COOH groups: DFTB study. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 4, pp. 485-494. DOI: 10.18500/1817-3020-2025-25-4-485-494, EDN: XIORAE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.11.2025
Full text:
(downloads: 5)
Language: 
Russian
Article type: 
Article
UDC: 
538.915
EDN: 
XIORAE

Sensor properties of thin films of perforated graphene functionalized with COOH groups: DFTB study

Autors: 
Barkov Pavel V., Saratov State University
Slepchenkov Mikhail Mikhailovich, Saratov State University
Glukhova Olga Evgen'evna, Saratov State University
Abstract: 

Background and Objectives: Currently, perforated graphene is one of the most discussed representatives of porous 2D nanomaterials from the standpoint of their promising properties and prospects for application in nanoelectronics and nanosensors. In this paper, we consider perforated graphene films with almost round holes with a diameter of 1.2 nm, functionalized with carboxyl (COOH) groups. The aim of the work was to study the chemoresistive response of such films to NO2 gas molecules, which is one of the air pollutants. Materials and Methods: To conduct the study, we used the quantum density functional method in the tight-binding approximation with self-consistent charge calculation. Calculations of the chemoresistive response were carried out in the presence of water molecules on the surface of the functionalized perforated graphene film at a temperature of 300 K. Results: It has been found that the film response value is 87–93% depending on the number of NO2 molecules adsorbed on the surface of the perforated graphene (from 1 to 6). The high chemoresistive sensitivity of the studied films is explained by a sharp decrease in its resistance (by an order of magnitude) when NO2 molecules are deposited. The observed decrease in resistance is explained from the standpoint of changes in the electronic structure of the film and the laws of quantum electron transport in it. Conclusion: The results obtained indicate promising prospects for the use of functionalized perforated graphene films in a gas sensor for detecting pollutants in the air.

Acknowledgments: 
The research was supported by the Russian Science Foundation (project No. 23-72-01122, https://rscf.ru/project/23-72-01122/).
Reference: 
  1. Wang D., Dou Y., Zhang X., Bi K., Panneerselvam I. R., Sun H., Jiang X., Dai R., Song K., Zhuang H., Lu Y., Wang Y., Liao Y., Ding L., Nian Q. Manufacturing and applications of multi-functional holey two-dimensional nanomaterials – A Review. Nano Today, 2024, vol. 55, art. 102162. https://doi.org/10.1016/j.nantod.2024.102162
  2. Nazarian-Samani M., Haghighat-Shishavan S., Nazarian-Samani M., Kashani-Bozorg S. F., Ramakrishna S., Kim K.-B. Perforated two-dimensional nanoarchitectures for next-generation batteries: Recent advances and extensible perspectives. Progr. Mater. Sci., 2021, vol. 116, art. 100716. https://doi.org/10.1016/j.pmatsci.2020.100716
  3. Bai J., Zhong X., Jiang S., Duan X. Graphene nanomesh. Nature Nanotechnology, 2010, vol. 5, pp. 190–194. https://doi.org/10.1038/nnano.2010.8
  4. Yang J., Ma M., Li L., Zhang Y., Huang W., Dong X. Graphene nanomesh: New versatile materials. Nanoscale, 2014, vol. 6, pp. 13301–13313. https://doi.org/10.1039/C4NR04584J
  5. Rajput N. S., Zadjali S. A., Gutierrez M., Esawi A. M. K., Teneiji M. A. Synthesis of holey graphene for advanced nanotechnological applications. RSC Adv., 2021, vol. 11, pp. 27381–27405. https://doi.org/10.1039/d1ra05157a
  6. Ma R., Zhou Y., Bi H., Yang M., Wang J., Liu Q., Huang F. Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progr. Mater. Sci., 2020, vol. 113, art. 100665. https://doi.org/10.1016/j.pmatsci.2020.100665
  7. Lin Y., Liao Y., Chen Zh., Connell J. W. Holey graphene: a unique structural derivative of graphene. Mater. Res. Lett., 2017, vol. 5, pp. 209–234. https://doi.org/10.1080/21663831.2016.1271047
  8. Liu T., Zhang L., Cheng B., Hu X., Yu J. Holey Graphene for Electrochemical Energy Storage. Cell Reports Phys. Sci., 2020, vol. 1, art. 100215. https://doi.org/10.1016/j.xcrp.2020.100215
  9. Yang K., Li J., Zhou L., Zhang T., Fu L. Synthetic strategies of two-dimensional porous materials towards highly effective catalysts. Flat Chem., 2019, vol. 15, art. 100109. https://doi.org/10.1016/j.flatc.2019.100109
  10. Kim M., Safron N. S., Han E., Arnold M. S., Gopalan P. Fabrication and Characterization of Large-Area, Semiconducting Nanoperforated Graphene Materials. Nano Lett., 2010, vol. 10, pp. 1125–1131. https://doi.org/10.1021/nl9032318
  11. Liang X., Jung Y. S., Wu S., Ismach A., Olynick D. L., Cabrini S., Bokor J. Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography. Nano Lett., 2010, vol. 10, pp. 2454–2460. https://doi.org/10.1021/nl100750v
  12. Yang C.-H., Huang P.-L., Luo X.-F., Wang C.-H., Li C., Wu Y.-H., Chang J.-K. Holey Graphene Nanosheets with Surface Functional Groups as High-Performance Supercapacitors in Ionic-Liquid Electrolyte. Chem. Sus. Chem., 2015, vol. 8, pp. 1779–1786. https://doi.org/10.1002/cssc.201500030
  13. Sammed K. A., Pan L., Asif M., Usman M., Cong T., Amjad F., Imran M. A. Reduced holey graphene oxide film and carbon nanotubes sandwich structure as a binder-free electrode material for supercapcitor. Sci. Rep., 2020, vol. 10, art. 2315. https://doi.org/10.1038/s41598-020-58162-9
  14. Su F., Zheng S., Liu F., Zhang X., Su F., Wu Z.-S. Nitrogen-doped holey graphene nanoscrolls for high-energy and high-power supercapacitors. Chin. Chem. Lett., 2021, vol. 32, pp. 914–917. https://doi.org/10.1016/j.cclet.2020.07.025
  15. Jeong J. H., Lee G.-W., Kim Y. H., Choi Y. J., Roh K. C., Kim K.-B. A holey graphene-based hybrid supercapacitor. Chem. Eng. J., 2019, vol. 378, art. 122126. https://doi.org/10.1016/j.cej.2019.122126
  16. Yang D., Xu B., Zhao Q., Zhao X. S. Three-dimensional nitrogen-doped holey graphene and transition metal oxide composites for sodium-ion batteries. J. Mater. Chem. A, 2019, vol. 7, pp. 363–371. https://doi.org/10.1039/C8TA09188A
  17. Esfandiar A., Kybert N. J., Dattoli E. N., Han G. H., Lerner M. B., Akhavan O., Irajizad A., Johnson A. T. C. DNA-decorated graphene nanomesh for detection of chemical vapors. Applied Physics Letters, 2013, vol. 103, art. 183110. https://doi.org/10.1063/1.4827811
  18. Chen Z., Zhang Y., Yang Y., Shi X., Zhang L., Jia G. Hierarchical nitrogen-doped holey graphene as sensitive electrochemical sensor for methyl parathion detection. Sensors and Actuators B: Chemical, 2021, vol. 336, art. 129721. https://doi.org/10.1002/cssc.201501169
  19. Eldeeb M. S., Fadlallah M. M., Martyna G. J., Maarouf A. A. Doping of large-pore crown graphene nanomesh. Carbon, 2018, vol. 133, pp. 369–378. https://doi.org/10.1016/j.carbon.2018.03.048
  20. Huang L., Miao S., Wang X., Yang X. DFT study of gas adsorbing and electronic properties of unsaturated nanoporous graphene. Molecular Simulation, 2020, vol. 46, pp. 853–863. https://doi.org/10.1080/08927022.2020.1778171
  21. Rabchinskii M. K., Saveliev S. D., Stolyarova D. Yu., Brzhezinskaya M., Kirilenko D. A., Baidakova M. V., Ryzhkov S. A., Shnitov V. V., Sysoev V. V., Brunkov P. N. Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination. Carbon, 2021, vol. 182, pp. 593–604. https://doi.org/10.1016/j.carbon.2021.06.057
  22. Shnitov V. V., Rabchinskii M. K., Brzhezinskaya M., Stolyarova D. Yu., Pavlov S. V., Baidakova M. V., Shvidchenko A. V., Kislenko V. A., Kislenko S. A., Brunkov P. N. Valence band structure engineering in graphene derivatives. Small, 2021, vol. 17, art. 2104316. https://doi.org/10.1002/smll.202104316
  23. Barkov P. V., Slepchenkov M. M., Glukhova O. E. Electrophysical properties of thin films of perforated graphene functionalized with carbonyl groups. Technical Physics, 2024, vol. 94, iss. 3, pp. 426–432 (in Russian).
  24. Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim Th., Suhai S., Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B, 1998, vol. 58, pp. 7260–7268. https://doi.org/10.1103/PhysRevB.58.7260
  25. Aradi B., Hourahine B., Frauenheim Th. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A, 2007, vol. 111, iss. 26, pp. 5678–5684. https://doi.org/10.1021/jp070186p
  26. Hourahine B., Aradi B., Blum V., Bonafé F., Buccheri A., Camacho C., Cevallos C., Deshaye M. Y., Dumitrică T., Dominguez A., Ehlert S., Elstner M., van der Heide T., Hermann J., Irle S., Kranz J. J., Köhler C., Kowalczyk T., Kubař T., Lee I. S. et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys., 2020, vol. 152, iss. 12, art. 124101. https://doi.org/10.1063/1.5143190
  27. Elstner M., Seifert G. Density functional tight binding. Philos. Trans. Royal Soc. A, 2014, vol. 372, art. 20120483. https://doi.org/10.1098/rsta.2012.0483
  28. Monkhorst H. J., Pack J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B, 1976, vol. 13, pp. 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188
  29. Datta S. Quantum Transport: Atom to Transistor. Cambridge, Cambridge University Press, 2005. xiv + 404 p.
  30. Rabchinskii M. K., Shnitov V. V., Dideikin A. T., Aleksenskii A. E., Vul S. P., Baidakova M. V., Pronin I. I., Kirilenko D. A., Brunkov P. N., Weise J., Molodtsov S. L. Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. J. Phys. Chem. C, 2016, vol. 12, pp. 28261–28269. https://doi.org/10.1021/acs.jpcc.6b08758
  31. Sakkaki B., Saghai H. R., Darvish G., Khatir M. Electronic and optical properties of passivated graphene nanomeshes: An ab initio study. Opt. Mater., 2021, vol. 122, art. 111707. https://doi.org/10.1016/j.optmat.2021.111707
  32. Zhang J., Zhang W., Ragab T., Basaran C. Mechanical and electronic properties of graphene nanomesh heterojunctions. Comp. Mater. Sc., 2018, vol. 153, pp. 64–72. https://doi.org/10.1016/j.commatsci.2018.06.026
  33. Glukhova O. E., Barkov P. V. A new method for determining energetically favorable landing sites of carboxyl groups during the functionalization of graphene nanomesh. Letters on Materials, 2021, no. 4, pp. 392–396. https://doi.org/10.22226/2410-3535-2021-4-392-396
  34. Slepchenkov M. M., Barkov P. V., Glukhova O. E Influence of functional groups on the electronic and energy characteristics of thin films of holey graphene: Results of DFTB simulation. Izvestiya of Saratov Univercity. Physics, 2024, vol. 24, iss. 2, pp. 114–125 (in Russian). https://doi.org/10.18500/1817-3020-2024-24-2-114-125
  35. Rabchinskii M. K., Sysoev V. V., Glukhova O. E., Brzhezinskaya M., Stolyarova D. Yu., Varezhnikov A. S., Solomatin M. A., Barkov P. V., Kirilenko D. A., Pavlov S. I., Baidakova M. V., Shnitov V. V., Struchkov N. S., Nefedov D. Yu., Antonenko A. O., Cai P., Liu Z., Brunkov P. N. Guiding graphene derivatization for the on-chip multisensor arrays: From the synthesis to the theoretical background. Adv. Mater. Technol., 2022, vol. 7, art. 2101250. https://doi.org/10.1002/admt.202101250
Received: 
14.04.2025
Accepted: 
10.07.2025
Published: 
28.11.2025