Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ten G. N., Plaksin M. I. Application of Au10 gold nanoclusters to block the formation of DNA from non-canonical forms. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 2, pp. 157-166. DOI: 10.18500/1817-3020-2025-25-2-157-166, EDN: TCANCU

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.06.2025
Full text:
(downloads: 196)
Language: 
Russian
Article type: 
Article
UDC: 
543.421
EDN: 
TCANCU

Application of Au10 gold nanoclusters to block the formation of DNA from non-canonical forms

Autors: 
Ten Galina Nikolaevna, Saratov State University
Plaksin Mikhail I., Saratov State University
Abstract: 

Background and Objectives: The objects of this study are gold nanoclusters and nucleic acid bases. The aim of the work is to study the interaction of gold plates, for which gold neutral flat 2D clusters (n = 10) were selected, with canonical and rare tautomeric forms of nucleic acid bases (BNA), as well as complementary pairs of Ade-Thy and Gua-Cyt. Materials and Methods: Calculations of the structure and vibrational spectra have been performed by the DFT method using the Gaussian-09 program. Results: The different character of interaction of gold Au10 nanoclusters with rare forms of nucleic acid bases has been observed. Conclusion: This feature leads to the formation of covalent bonds between them, which makes it possible to block or limit the uncontrolled process of DNA formation from non-canonical forms.

Reference: 
  1. Dykman L. A., Khlebtsov N. G. Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects. Acta Naturae, 2011, vol. 3, iss. 2, pp. 34−55. https://doi.org/10.32607/20758251-2011-3-2-34-56
  2. Elagin V. V., Bugrova M. L., Gorshkova E. N., Sergeeva E. A., Zagainova E. V. A comprehensive study of the interaction of gold nanorods with cancer cells. Modern Technologies in Medicine, 2014, vol. 6, no. 4, pp. 26−37 (in Russian).
  3. Pichugina D. A., Mazhuga A. G., Shestakov A. F. Gold nanoparticles: preparation, structure, properties and applications. In: Organicheskie i gibridnye nanomaterialy: tendentsii i perspectivy [Razumov V. F., Klyuev M. V., eds. Organic and hybrid nanomaterials: Trends and prospects]. Ivanovo, Ivanovo State University Publ., 2013, pp. 147–180 (in Russian).
  4. Chen J., Glaus C., Laforest R., Zhang Q., Yang M., Gidding M., Welch M. J., Xia Y. Gold nanocages as photothermal transducers for cancer treatment. Small, 2010, vol. 6, iss. 7, pp. 811–817. https://doi.org/10.1002/smll.200902216
  5. Schmidbaur H., Raubenheimer H. G., Dobrzańska L. The gold-hydrogen bond, Au-H, and the hydrogen bond to gold, Au…HX. Chem. Soc. Rev., 2014, vol. 43, iss. 1, pp. 345−380. https://doi.org/10.1039/c3cs60251f
  6. Pyykko P. Theoretical chemistry of gold. II. Inorganica Chimica Acta, 2005, vol. 358, pp. 4113–4130. http://doi.org/10.1016/j.ica.2005.06.028
  7. Häkkinen H. Ligand-protected gold nanoclusters as superatoms – insights from theory and computations. Frontiers of Nanoscience, 2012, vol. 3, iss. 1, pp. 129–157. https://doi.org/10.1016/B978-0-08-096357-0.00004-2
  8. Pei Y., Zeng X. C. Investigating the structural evolution of thiolate protected gold clusters from firstprinciples. Nanoscale, 2012, vol. 4, iss. 14, pp. 4054–4072. https://doi.org/10.1039/c2nr30685a
  9. Shulimovich T. V., Nasluzova O. I., Shor A. M., Nasluzov V. A., Rubailo A. I. Quantum chemical calculation of the structure and nucleation energy of nanoscale gold clusters on the surface of α-Al2O3(0001). Journal of Siberian Federal University. Chemistry, 2008, vol. 1, iss. 1, pp. 71–79 (in Russian).
  10. Jamshidi Z., Farhangian H., Tehrani Z. A. Glucose interaction with Au, Ag, and Cu clusters: Theoretical investigation. Int. J. of Quant. Chem., 2013, vol. 113, iss. 8, pp. 1062−1070. https://doi.org/10.1002/qua.24122
  11. Saenger W. Principles of nucleic acid structure. New York, Springer, 1984. 556 p. https://doi.org/10.1007/978-1-4612-5190-3
  12. Ten G. N., Nechaev V. V., Pankratov A. N., Baranov V. I. Hydrogen bonding effect on the structure and vibrational spectra of complementary pairs of nucleic acid bases. I. Adenine-Uracil. J. Struct. Chem., 2010, vol. 51, no. 3, pp. 453−462. https://doi.org/10.1007/s10947-010-0067-2
  13. Nowak M. J., Lapinski L., Fulara J. Matrix isolation studies of cytosine: The separation of the infrared spectra of cytosine tautomers. Spectrochim. Acta, 1989, vol. 45 A, no. 2, pp. 229–242. https://doi.org/10.1016/0584-8539(89)80129-1
  14. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M. et al. Gaussian 09. Gaussian Inc., Wallingford CT, 2009. 394 р.
  15. Makarov V. V., Love A. J., Sinitsyna O. V., Makarova S. S., Yaminsky I. V., Taliansky M. E., Kalinina N. O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 2014. Vol. 6, no. 1 (20). С. 35−44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  16. van Zundert Gydo C. P., Jaeqx S., Berden G., Bakker J. M., Kleinermanns K., Oomens J., Rijs A. M. IR spectroscopy of isolated neutral and protonated adenine and 9-methyladenine. Chem. Phys. Chem., 2011, vol. 12, iss. 10, pp. 1921–1927. https://doi.org/10.1002/cphc.201100133
  17. Novak M. J., Lapinski L., Kwiatkowski J. Molecular structure and infared spectra of adenine. Experimental matrix isolation and density functional theory of adenine 15N isotopomers. J. Phys. Chem., 1996, vol. 100, no. 9, pp. 3527–3534. https://doi.org/10.1021/jp9530008
  18. Suresh Kumar N. V., Rai S., Singh H. A theoretical study on interaction of proline with gold cluster. Bull. Mater. Sci., 2012, vol. 35, pp. 291–295. https://doi.org/10.1007/s12034-012-0314-6
  19. Rai S., Singh H., Priyakumar U. D. Binding to gold nanocluster alters the hydrogen bonding interactions and electronic properties of canonical and size expanded DNA base pairs. RSC Adv., 2015, vol. 5, pp. 49408–49419. https://doi.org/10.1039/C5RA04668H
  20. Hvolbæk B., Janssens,T. V. W., Clausen B. S., Falsig H., Christensen C. H., Nørskov J. K. Catalytic activity of Au nanoparticles. Nano Today, 2007, vol. 2, no. 4, pp. 14–18. https://doi.org/10.1016/S1748-0132(07)70113-5
Received: 
24.11.2024
Accepted: 
17.02.2025
Published: 
30.06.2025