For citation:
Bogatenko T. R., Sergeev K. S., Strelkova G. I. Application of machine learning and statistics to anaesthesia detection from EEG data. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 3, pp. 209-215. DOI: 10.18500/1817-3020-2024-24-3-209-215, EDN: HKYBMM
Application of machine learning and statistics to anaesthesia detection from EEG data
Background and Objectives: The purpose of the research is to establish whether it is possible to determine the degree of anaesthesia that a laboratory animal is experiencing noninvasively. For this objective the usage of such methods of electroencephalogram (EEG) signal analysis as fast Fourier transform, K-Means machine learning method and statistical analysis is discussed. Models and Methods: The EEG data was obtained through an experiment where two groups of laboratory rats received different types of anaesthetic agent. The EEG data was normalised,then the power spectra were computed using fast Fouriertransform. Next, the K-Means method was applied to classify the data in accordance with the anaesthesia degree. Statistical analysis was also conducted to describe prominent characteristics of each stage. Results: It has been shown that the proposed data analysis methods allow to distinguish between normal state, anaesthesia, and death with increasing anaesthesia dosages in laboratory animals.
- Keech B. M., Lazerta R. Anaesthesia secrets. 6th ed. Elsevier, 2020. ISBN: 9780323640152
- Weller R. O., Galea I., Carare R. O., Minagar A. Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology, 2010, vol. 17, pp. 295–306. https://doi.org/10.1016/j.pathophys.2009.10.007
- Ahn J. H., Cho H., Kim J.-H., Kim S. H., Ham J.-S., Park I., Suh S. H., Hong S. P., Song J.-H., Hong Y.-K., Jeong Y., Park S.-H., Koh G. Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, vol. 572, pp. 62–66. https://doi.org/10.1038/s41586-019-1419-5
- Chen J., Wang L., Xu H., Xing L., Zhuang Z., Zheng Y., Li X., Wang C., Chen S., Guo Z., Liang Q., Wang Y. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat. Commun., 2020, vol. 11, article no. 3159. https://doi.org/10.1038/s41467-020-16851-z
- Semyachkina-Glushkovskaya O., Penzel T., Blokhina I., Khorovodov A., Fedosov I., Yu T., Karandin G., Evsukova A., Elovenko D., Adushkina V., Shirokov A., Dubrovskii A., Terskov A., Navolokin N., Tzoy M., Ageev V., Agranovich I., Telnova V., Tsven A., Kurths J. Night Photostimulation of Clearance of Beta-Amyloid from Mouse Brain: New Strategies in Preventing Alzheimer’s Disease. Cells, 2021, vol. 10, iss. 12, article no. 3289. https://doi.org/10.3390/cells10123289
- Musizza B., Ribaric S. Monitoring the Depth of Anaesthesia. Sensors, 2010, vol. 10, iss. 12, pp. 10896–10935. https://doi.org/10.3390/s101210896
- Buhre W., Rossaint R. Perioperative management and monitoring in anaesthesia. Lancet, 2003, vol. 362, iss. 9398, pp. 1893–1846. https://doi.org/10.1016/S0140-6736(03)14905-7
- Malik P., Pathania M., Rathaur V. K. Overview of artificial intelligence in medicine. J. Family. Med. Prim. Care, 2019, vol. 8, iss. 7, pp. 2328–2331. https://doi.org/10.4103/jfmpc.jfmpc_440_19
- Semyachkina-Glushkovskaya O. V., Karavaev A. S., Prokhorov M. D., Runnova A. E., Borovkova E. I., Ishbulatov Yu. M., Hramkov A. N., Kulminskiy D. D., Semenova N. I., Sergeev K. S., Slepnev A. V., Sitnikova E. Yu., Zhuravlev M. O., Fedosov I. V., Shirokov A. A., Blokhina I. A., Dubrovski A. I., Terskov A. V., Khorovodov A. P., Ageev V. B., Elovenko D. A., Evsukova A. S., Adushkina V. V., Telnova V. V., Postnov D. E., Penzel T. U., Kurths J. G. EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the blood-brain barrier. Computational and Structural Biotechnology Journal, 2023, vol. 21, pp. 758–768. https://doi.org/10.1016/j.csbj.2022.12.019
- Sergeev K., Runnova A., Zhuravlev M., Sitnikova E., Rutskova E., Smirnov K., Slepnev A., Semenova N. Simple method for detecting sleep episodes in rats ECoG using machine learning. Chaos, Solitons & Fractals, 2023, vol. 173, article no. 113608. https://doi.org/10.1016/j.chaos.2023.113608
- Descriptive statistics (GNU Octave (version 9.1.0)). Available at: https://docs.octave.org/v9.1.0/Descriptive-Statistics.html (accessed March 17, 2024).
- GNU Octave: libinterp/corefcn/fft.cc File Reference. Available at: https://docs.octave.org/doxygen/3.8/d6/d67/fft_8cc.html (accessed March 17, 2024).
- Baumeister J., Barthel T., Geiss K. R., Weiss M. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutritional Neuroscience, 2008, vol. 11, iss. 3, pp. 103–110. https://doi.org/10.1179/147683008X301478
- De Gennaro L., Ferrara M., Bertini M. The spontaneous K-complex during stage 2 sleep: Is it the ’forerunner’ of delta waves? Neuroscience Letters, 2000, vol. 291, iss. 1, pp. 41–43. https://doi.org/10.1016/S0304-3940(00)01366-5
- Jensen O., Mazaheri A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci., 2010, vol. 4, article no. 186. https://doi.org/10.3389/fnhum.2010.00186
- Lomas T., Ivtzan I., Cynthia H. Y. Fu. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience & Biobehavioral Reviews, 2015, vol. 57, pp. 401–410. https://doi.org/10.1016/j.neubiorev.2015.09.018
- Lega B. C., Jacobs J. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 2012, vol. 22, iss. 4, pp. 748–761. https://doi.org/10.1002/hipo.20937
- Tesche C. D., Karhu J. Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA, 2000, vol. 97, iss. 2, pp. 919–924. https://doi.org/10.1073/pnas.97.2.919
- Llinás R., Ribary U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci., 1993, vol. 90, iss. 5, pp. 2078–2081. https://doi.org/10.1073/pnas.90.5.2078
- Baldauf D., Desimone R. Neural Mechanisms of Object-Based Attention. Science, 2014, vol. 344, iss. 6182, pp. 424–427. https://doi.org/10.1126/science.1247003
- Borjigin J., Lee U. C., Liu T., Pal D., Huff S., Klarr D., Sloboda J., Hernandez J., Wang M. M., Mashourc G. A. Surge of neurophysiological coherence and connectivity in the dying brain. Proc Natl Acad Sci., 2013, vol. 110, iss. 35, pp. 14432–14437. https://doi.org/10.1073/pnas.1308285110
- Li D., Mabrouk O. S., Liu T., Tian F., Xu G., Rengifo S., Choi S. J., Mathur A., Crooks C. P., Kennedy R. T., Wang M. M., Ghanbari H., Borjigin J. Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest. Proc Natl Acad Sci., 2015, vol. 112, iss. 16, pp. 2073–2082. https://doi.org/10.1073/pnas.1423936112
- 264 reads