Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Bogatenko T. R., Sergeev K. S., Strelkova G. I. Application of machine learning and statistics to anaesthesia detection from EEG data. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 3, pp. 209-215. DOI: 10.18500/1817-3020-2024-24-3-209-215, EDN: HKYBMM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.08.2024
Full text:
(downloads: 87)
Language: 
English
Article type: 
Article
UDC: 
577.35
EDN: 
HKYBMM

Application of machine learning and statistics to anaesthesia detection from EEG data

Autors: 
Bogatenko Tatiana Romanovna, Saratov State University
Sergeev Konstantin Sergeevich, Saratov State University
Strelkova Galina Ivanovna, Saratov State University
Abstract: 

Background and Objectives: The purpose of the research is to establish whether it is possible to determine the degree of anaesthesia that a laboratory animal is experiencing noninvasively. For this objective the usage of such methods of electroencephalogram (EEG) signal analysis as fast Fourier transform, K-Means machine learning method and statistical analysis is discussed. Models and Methods: The EEG data was obtained through an experiment where two groups of laboratory rats received different types of anaesthetic agent. The EEG data was normalised,then the power spectra were computed using fast Fouriertransform. Next, the K-Means method was applied to classify the data in accordance with the anaesthesia degree. Statistical analysis was also conducted to describe prominent characteristics of each stage. Results: It has been shown that the proposed data analysis methods allow to distinguish between normal state, anaesthesia, and death with increasing anaesthesia dosages in laboratory animals.

Acknowledgments: 
The research was supported by IDEAS Research Centre scholarship (No. АСП-09-2021/I). The research was partially conducted within the Megagrant (project No. 075-15-2022 (075-15-2019-1885)).
Reference: 
  1. Keech B. M., Lazerta R. Anaesthesia secrets. 6th ed. Elsevier, 2020. ISBN: 9780323640152
  2. Weller R. O., Galea I., Carare R. O., Minagar A. Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology, 2010, vol. 17, pp. 295–306. https://doi.org/10.1016/j.pathophys.2009.10.007
  3. Ahn J. H., Cho H., Kim J.-H., Kim S. H., Ham J.-S., Park I., Suh S. H., Hong S. P., Song J.-H., Hong Y.-K., Jeong Y., Park S.-H., Koh G. Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, vol. 572, pp. 62–66. https://doi.org/10.1038/s41586-019-1419-5
  4. Chen J., Wang L., Xu H., Xing L., Zhuang Z., Zheng Y., Li X., Wang C., Chen S., Guo Z., Liang Q., Wang Y. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat. Commun., 2020, vol. 11, article no. 3159. https://doi.org/10.1038/s41467-020-16851-z
  5. Semyachkina-Glushkovskaya O., Penzel T., Blokhina I., Khorovodov A., Fedosov I., Yu T., Karandin G., Evsukova A., Elovenko D., Adushkina V., Shirokov A., Dubrovskii A., Terskov A., Navolokin N., Tzoy M., Ageev V., Agranovich I., Telnova V., Tsven A., Kurths J. Night Photostimulation of Clearance of Beta-Amyloid from Mouse Brain: New Strategies in Preventing Alzheimer’s Disease. Cells, 2021, vol. 10, iss. 12, article no. 3289. https://doi.org/10.3390/cells10123289
  6. Musizza B., Ribaric S. Monitoring the Depth of Anaesthesia. Sensors, 2010, vol. 10, iss. 12, pp. 10896–10935. https://doi.org/10.3390/s101210896
  7. Buhre W., Rossaint R. Perioperative management and monitoring in anaesthesia. Lancet, 2003, vol. 362, iss. 9398, pp. 1893–1846. https://doi.org/10.1016/S0140-6736(03)14905-7
  8. Malik P., Pathania M., Rathaur V. K. Overview of artificial intelligence in medicine. J. Family. Med. Prim. Care, 2019, vol. 8, iss. 7, pp. 2328–2331. https://doi.org/10.4103/jfmpc.jfmpc_440_19
  9. Semyachkina-Glushkovskaya O. V., Karavaev A. S., Prokhorov M. D., Runnova A. E., Borovkova E. I., Ishbulatov Yu. M., Hramkov A. N., Kulminskiy D. D., Semenova N. I., Sergeev K. S., Slepnev A. V., Sitnikova E. Yu., Zhuravlev M. O., Fedosov I. V., Shirokov A. A., Blokhina I. A., Dubrovski A. I., Terskov A. V., Khorovodov A. P., Ageev V. B., Elovenko D. A., Evsukova A. S., Adushkina V. V., Telnova V. V., Postnov D. E., Penzel T. U., Kurths J. G. EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the blood-brain barrier. Computational and Structural Biotechnology Journal, 2023, vol. 21, pp. 758–768. https://doi.org/10.1016/j.csbj.2022.12.019
  10. Sergeev K., Runnova A., Zhuravlev M., Sitnikova E., Rutskova E., Smirnov K., Slepnev A., Semenova N. Simple method for detecting sleep episodes in rats ECoG using machine learning. Chaos, Solitons & Fractals, 2023, vol. 173, article no. 113608. https://doi.org/10.1016/j.chaos.2023.113608
  11. Descriptive statistics (GNU Octave (version 9.1.0)). Available at: https://docs.octave.org/v9.1.0/Descriptive-Statistics.html (accessed March 17, 2024).
  12. GNU Octave: libinterp/corefcn/fft.cc File Reference. Available at: https://docs.octave.org/doxygen/3.8/d6/d67/fft_8cc.html (accessed March 17, 2024).
  13. Baumeister J., Barthel T., Geiss K. R., Weiss M. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutritional Neuroscience, 2008, vol. 11, iss. 3, pp. 103–110. https://doi.org/10.1179/147683008X301478
  14. De Gennaro L., Ferrara M., Bertini M. The spontaneous K-complex during stage 2 sleep: Is it the ’forerunner’ of delta waves? Neuroscience Letters, 2000, vol. 291, iss. 1, pp. 41–43. https://doi.org/10.1016/S0304-3940(00)01366-5
  15. Jensen O., Mazaheri A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci., 2010, vol. 4, article no. 186. https://doi.org/10.3389/fnhum.2010.00186
  16. Lomas T., Ivtzan I., Cynthia H. Y. Fu. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience & Biobehavioral Reviews, 2015, vol. 57, pp. 401–410. https://doi.org/10.1016/j.neubiorev.2015.09.018
  17. Lega B. C., Jacobs J. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 2012, vol. 22, iss. 4, pp. 748–761. https://doi.org/10.1002/hipo.20937
  18. Tesche C. D., Karhu J. Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA, 2000, vol. 97, iss. 2, pp. 919–924. https://doi.org/10.1073/pnas.97.2.919
  19. Llinás R., Ribary U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci., 1993, vol. 90, iss. 5, pp. 2078–2081. https://doi.org/10.1073/pnas.90.5.2078
  20. Baldauf D., Desimone R. Neural Mechanisms of Object-Based Attention. Science, 2014, vol. 344, iss. 6182, pp. 424–427. https://doi.org/10.1126/science.1247003
  21. Borjigin J., Lee U. C., Liu T., Pal D., Huff S., Klarr D., Sloboda J., Hernandez J., Wang M. M., Mashourc G. A. Surge of neurophysiological coherence and connectivity in the dying brain. Proc Natl Acad Sci., 2013, vol. 110, iss. 35, pp. 14432–14437. https://doi.org/10.1073/pnas.1308285110
  22. Li D., Mabrouk O. S., Liu T., Tian F., Xu G., Rengifo S., Choi S. J., Mathur A., Crooks C. P., Kennedy R. T., Wang M. M., Ghanbari H., Borjigin J. Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest. Proc Natl Acad Sci., 2015, vol. 112, iss. 16, pp. 2073–2082. https://doi.org/10.1073/pnas.1423936112
Received: 
17.05.2024
Accepted: 
15.06.2024
Published: 
30.08.2024