Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Postelga A. E., Igonin S. V., Bochkova T. S., Nagornov G. M., Skripal A. V. Modulation of laser radiation by suspension of carbon nanotubes in a magnetic liquid. Izvestiya of Saratov University. Physics , 2024, vol. 24, iss. 2, pp. 171-179. DOI: 10.18500/1817-3020-2024-24-2-171-179, EDN: MKYJYH

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.06.2024
Full text:
(downloads: 38)
Language: 
Russian
Article type: 
Article
UDC: 
621.37:621.385.69:621.373
EDN: 
MKYJYH

Modulation of laser radiation by suspension of carbon nanotubes in a magnetic liquid

Autors: 
Postelga Aleksandr E., Saratov State University
Igonin Semyon Vladimirovich, Saratov State University
Bochkova Tatyana S., Saratov State University
Nagornov Georgy M., Saratov State University
Skripal Alexander Vladimirovich, Saratov State University
Abstract: 

Background and Objectives: Magnetic fluids are unique nanodispersed systems that have the properties of a magnetic material and a liquid. Although their magnetic properties are inferior to steels and ferrites, they are supermagnetic compared to most liquid media. When a magnetic field is applied to a magnetic fluid, agglomerates of ferromagnetic nanoparticles are formed in it, which were visually observed in this work. Materials and Methods: The dependence of the modulation depth of laser radiation with wavelengths of 450 nm, 550 nm and 650 nm on the concentration of nanotubes and the magnitude of the magnetic field induction is studied. The transmittance of polarized radiation in the optical range is measured depending on the relative position of agglomerates of ferromagnetic nanoparticles and the vector of the electric field strength of laser radiation. The angle between the electrical component of the laser radiation and the magnetic field induction vector changes by rotating the laser diode and polarizer with a servomotor relative to the vertical axis. Results: The maximum value of the modulation depth for magnetic fluid without carbon nanotubes is 15% and is observed for laser radiation with a wavelength of 650 nm. Adding multi-walled carbon nanotubes to the magnetic fluid makes it possible to increase the modulation depth by approximately one and a halftimes. Conclusion: It has been revealed that with increasing wavelength of laser radiation, the modulation depth increases. As the magnetic field induction value increases, the modulation depth of polarized laser radiation increases for all wavelengths. The addition of carbon nanotubes to the magnetic fluid leads to their alignment along the agglomerates.

Reference: 
  1. Philip J., Laskar J. M. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science, 2023, vol. 311, article no. 102810. https://doi.org/10.1016/j.cis.2022.102810
  2. Oehlsen O., Cervantes-Ramírez S. I., Cervantes-Avilés P., Medina-Velo I. A. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS Omega, 2022, vol. 7, iss. 4, article no. 3134. https://doi.org/10.1021/acsomega.1c05631
  3. Ryzhkov A. V., Melenov P. V., Raykher Yu. L. Magnetic and structural properties of a magnetopolymer composite: A multiparticle model. Nedelya nauki SPbPU: materialy nauchnogo foruma s mezhdunarodnym uchastiyem. Institut prikladnoy matematiki i mekhaniki [Science Week SPbPU. Materials of the Scientific Forum With International Participation. Institute of Applied Mathematics and Mechanics]. St. Petersburg, Polytechnic University Publ., 2015, pp. 216–218. Available at: https://aero.spbstu.ru/images/attachments/week-science/ipmm-2015.pdf (accessed January 01, 2024) (in Russian).
  4. Zhang X., Sun L., Yu Y., Zhao Y. Flexible Ferrofluids: Design and Applications. Adv. Mater., 2019, vol. 31, iss. 51, article no. 1903497. https://doi.org/10.1002/adma.201903497
  5. Burya P., Černobilaa F., Veveriččíka M., Kúdelčíka J., Hardoňa Š., Rajňákb M., Pavlovičováb K., Timkob M., Kopčanský P. Investigation of structural changes in oil-based magnetic fluids by surface acoustic waves. J. Magn. Magn. Mater., 2020, vol. 501, article no. 16639. https://doi.org/10.1016/j.jmmm.2020.166392
  6. Akchiche Z., Abba A. B., Saggai S. Magnetic nanoparticles for the Removal of Heavy Metals from industrial wastewater: Review. Algerian J. Chem. Eng., 2021, vol. 01, pp. 8–14. https://doi.org/10.5281/zenodo.4458444
  7. Hatamie A., Parham H., Zargar B., Heidari Z. Evaluating magnetic nano-ferrofluid as a novel coagulant for surface water treatment. J. Mol. Liq., 2016, vol. 219, pp. 694–702. https://doi.org/10.1016/j.molliq.2016.04.020
  8. Drozdova V. I., Skibin Yu. N., Shagrova G. V. Study of the structure of dilute magnetic fluids by anisotropic light scattering. Magnitnaya gidrodinamika [Magnetic Hydrodynamics], 1987, iss. 2, pp. 63–67 (in Russian).
  9. Haas W. E., Adams J. E. Diffraction effects in ferrofluids. Applied Physics Letters, 1975, vol. 27, iss. 10, pp. 571–572. https://doi.org/10.1063/1.88299
  10. Chandran S., Ronald T., Gavin L., Ratna N. Magnetic-field-induced optical anisotropy in ferrofluids: A time-dependent light-scattering investigation. Physical Review E, 2008, vol. 78, article no. 051502. https://doi.org/10.1103/PhysRevE.78.051502
  11. Ivanov A. O., Kantorovich S. S., Mendelev V. S., Pyanzina E. S. Ferrofluid aggregation in chains under the influence of a magnetic field. J. Magn. Magn. Mater., 2006, vol. 300, pp. e206–e209. https://doi.org/10.1016/j.jmmm.2005.10.081
  12. Černák J., Helgesen G., Skjeltorp A. T. Aggregation dynamics of nonmagnetic particles in a ferrofluid. Phys. Rev. E, 2004, vol. 70, article no. 031504. https://doi.org/0.1103/PhysRevE.70.031504
  13. Eldin Wee Chuan Lim, Ruili Feng. Agglomeration of magnetic nanoparticles. J. Chem. Phys., 2012, vol. 136, iss. 12, article no. 124109. https://doi.org/10.1063/1.3697865
  14. Yoshida T., Enpuku K., Dieckhoff J., Schilling M., Ludwig F. Magnetic fluid dynamics in a rotating magnetic field. J. Appl. Phys., 2012, vol. 111, iss. 5, article no. 053901. https://doi.org/10.1063/1.3688254
  15. Sebastian A. Agglomeration effects in rotating ferrofluids. J. Magn. Magn. Mater., 2019, vol. 482, pp. 239–250. https://doi.org/10.1016/j.jmmm.2019.03.068
  16. Sanz-Felipe A., Barba I., Martín J. C. Optical transmission of ferrofluids exposed to a magnetic field: Analysis by electromagnetic wave propagation numerical methods. J. Mol. Liq., 2020, vol. 315, article no. 113713. https://doi.org/10.1016/j.molliq.2020.113713
  17. Lakić M., Andjelković L., Šuljagić M., Vulić P., Perić M., Iskrenović P., Krstić I., Kuraica M. M., Nikolić A. S. Optical evidence of magnetic field-induced ferrofluid aggregation: Comparison of cobalt ferrite, magnetite, and magnesium ferrit. Opt. Mater., 2019, vol. 91, pp. 279–285. https://doi.org/10.1016/j.optmat.2019.03.031
  18. Usanov D. A., Skripal A. V., Ermolayev S. A. Visual observation of agglomerates in the volume of magnetic fluid. Pis’ma v ZHTF [Appl. Phys. Lett.], 1995, vol. 21, iss. 22, pp. 82–85 (in Russian).
  19. Usanov D. A., Postelga A. E., Bochkova T. S., Gavrilin V. N. Dynamics of nanoparticle agglomeration in a magnetic fluid in a varying magnetic field. Tech. Phys., 2016, vol. 61, iss. 3, pp. 464–466. https://doi.org/10.1134/S1063784216030221
  20. Belotelov V. I., Kreilkamp L. E., Akimov I. A., Kalish A. N. Plasmon-mediated magneto-optical transparency. Nature Communications, 2013, vol. 4, iss. 1, article no. 2128. https://doi.org/10.1038/ncomms3128
  21. Usanov D. A., Skripal A. V., Ermolaev S. A. Diffraction of light by agglomerates in a layer of magnetic fluid situated in a magnetic field parallel to the plane of the layer. Tech. Phys. Lett., 1997, vol. 23, iss. 2, pp. 115–116.
  22. Li J., Li G., Lu X., Wang S., Leng M., Yang S., Guan J., Long Y. Magnetically Responsive Optical Modulation: From Anisotropic Nanostructures to Emerging Applications. Adv. Funct. Mater., 2023, vol. 33, iss. 41, article no. 2308293. https://doi.org/10.1002/adfm.202308293
  23. Jing D., Sun L., Jin J., Thangamuthu M., Tang J. Magnetooptical transmission in magnetic nanoparticle suspensions for different optical applications: A review. Journal of Physics D: Applied Physics, 2021, vol. 54, iss. 1, article no. 013001. https://doi.org/10.1088/1361-6463/abb8fd
  24. Jian Li, Xiaodong Liu, Yueqiang Lin, Lang Bai, Qiang Li. Field modulation of light transmission through ferrofluid film. Appl. Phys. Lett., 2007, vol. 91, article no. 253108. https://doi.org/10.1063/1.2825464
  25. Philip J., Laskar. J. M. Optical Properties and Applications of Ferrofluids – A Review. J. Nanofluids, 2012, vol. 1, iss. 1, pp. 3–20. https://doi.org/10.1166/jon.2012. 1002
  26. Vales-Pinzón C., Alvarado-Gil J. J., Medina-Esquivel R., Martínez-Torres P. Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field. J. Magn. Magn. Mater., 2014, vol. 369, pp. 114–121. https://doi.org/10.1016/j.jmmm.2014.06.025
  27. Usanov D. A., Postelga A. E., Bochkova T. S., Gavrilin V. N., Igonin S. V. Modulation of polarized optical radiation passing through magnetic liquid with nanotubes in the presence of magnetic field with variable direction. Tech. Phys., 2017, vol. 62, iss. 9, pp. 1440–1443. https://doi.org/10.1134/S1063784217090274
Received: 
29.01.2024
Accepted: 
15.04.2024
Published: 
28.06.2024