For citation:
Shestakova L. N., Galochkina N. E., Trushina D. B., Klapshina L. G., Lermontova S. A., Balalaeva I. V., Shilyagina N. Y. Submicron vaterite particles, loaded with porphyrazine photosensitizer for photodynamic therapy of bladder carcinoma cells. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 1, pp. 56-67. DOI: 10.18500/1817-3020-2023-23-1-56-67, EDN: XFFREE
Submicron vaterite particles, loaded with porphyrazine photosensitizer for photodynamic therapy of bladder carcinoma cells
Background and Objectives: Bladder cancer is one of the ten most common cancers causing a high mortality rate. Photodynamic therapy (PDT) is one of the promising ways to treat this disease. To increase the effectiveness of PDT it is necessary to ensure selective delivery of photosensitizer to the tumor. Selective delivery systems such as nano- and microparticles of calcium carbonate in the polymorphic modification of vaterite are of great interest to solve this problem. Therefore, the aim of this study was to investigate submicron particles of vaterite as agents for selective delivery of photosensitizer PzBn on human bladder T24 cell culture. Materials and Methods: Calcium carbonate particles were obtained by mixing equimolar solutions of CaCl2 and Na2CO3 salts in the presence of glycerol. PzBn was immobilized by adsorbing the substance on preliminarily synthesized vaterite particles. The loading efficiency was evaluated using the spectrophotometric method. The experiments were carried out on the T24 human bladder carcinoma cell line. Intracellular localization was assessed using fluorescent laser confocal scanning microscopy. The study of the dynamics of PzBnVp accumulation by cells was carried out by spectrophotometry. Dark toxicity and photodynamic activity were analyzed using the MTT test. Results: The efficiency of loading porphyrazine into vaterite particles is over 9%. It has been shown that PzBnVp is characterized by rather rapid accumulation by T24 cells: the maximum accumulation is recorded already 30 minutes after its addition, after which the intensity of the fluorescence signal remains at a constant level for 5 hours of observation. It has been demonstrated that PzBnVp is characterized by low dark toxicity with high photodynamic activity. Conclusion: The possibility of loading vaterite particles with the photodynamic dye porphyrazine has been demonstrated. A high rate of entry of vaterite particles into the cell and the release of the loaded photosensitizer from particles and its subsequent redistribution over subcellular structures have been shown. The preservation of the photodynamic activity of porphyrazine in the composition of vaterite particles and the absence of dark toxicity in the studied concentration range have been demonstrated. Vaterite particles can be considered as promising agents for the selective delivery of porphyrazine to the tumor in order to increase the efficiency of photodynamic therapy.
- Jain P., Kathuria H., Momin M. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacology & Therapeutics, 2021, vol. 226, article no. 107871. https://doi.org/10.1016/j.pharmthera.2021.107871
- Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA : A Cancer Journal for Clinicians, 2021, vol. 71, iss. 3, pp. 209–249. https://doi.org/10.3322/caac.21660
- DeGeorge K. C., Holt H. R., Hodges S. C. Bladder Cancer: Diagnosis and Treatment. American Family Physician, 2017, vol. 96, iss. 8, pp. 507–514.
- Railkar R., Agarwal P. K. Photodynamic Therapy in the Treatment of Bladder Cancer: Past Challenges and Current Innovations. European Urology Focus, 2018, vol. 4, iss. 4, pp. 509–511. https://doi.org/10.1016/j.euf.2018.08.005
- Al-Omari S. Toward a molecular understanding of the photosensitizer-copper interaction for tumor destruction. Biophys Rev., 2013, vol. 5, iss. 4, pp. 305–311. https://doi.org/10.1007/s12551-013-0112-4
- Kruger C. A., Abrahamse H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules, 2018, vol. 23, iss. 10, article no. 2628. https://doi.org/10.3390/molecules23102628
- Du Y., Chen B. Combination of drugs and carriers in drug delivery technology and its development. Drug Design, Development and Therapy, 2019, vol. 13, pp. 1401–1408. https://doi.org/10.2147/dddt.s198056
- He X. W., Liu T., Chen Y. X., Cheng D. J., Li X. R., Xiao Y., Feng Y. L. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo. Cancer Gene Ther., 2008, vol. 15, iss. 3, pp. 193–202. https://doi.org/10.1038/sj.cgt.7701122
- Peng C., Zhao Q., Gao C. Sustained delivery of doxorubicin by porous CaCO3 and chitosan / alginate multilayers-coated CaCO3 microparticles. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 2010, vol. 353, iss. 2, pp. 132–139. https://doi.org/10.1016/j.colsurfa.2009.11.004
- Sato K., Seno M., Anzai J.-I. Release of Insulin from Calcium Carbonate Microspheres with and without Layerby-Layer Thin Coatings. Polymers, 2014, vol. 6, iss. 8, pp. 2157–2165. https://doi.org/10.3390/polym6082157
- Begum G., Reddy T. N., Kumar K. P., Dhevendar K., Singh S., Amarnath M., Misra S., Rangari V. K., Rana R. K. In Situ Strategy to Encapsulate Antibiotics in a Bioinspired CaCO3 Structure Enabling pH-Sensitive Drug Release Apt for Therapeutic and Imaging Applications. ACS Applied Materials & Interfaces, 2016, vol. 8, iss. 34, pp. 22056–22063. https://doi.org/10.1021/acsami.6b07177
- Lengert E., Verkhovskii R., Yurasov N., Genina E., Svenskaya Y. Mesoporous carriers for transdermal delivery of antifungal drug. Materials Letters, 2019, vol. 248, pp. 211–213. https://doi.org/10.1016/j.matlet.2019.04.028
- Boedtkjer E., Pedersen S. F. The Acidic Tumor Microenvironment as a Driver of Cancer. Annual Review of Physiology, 2020, vol. 82, pp. 103–126. https://doi.org/10.1146/annurev-physiol-021119-034627
- Zhang X., Lin Y., Gillies R. J. Tumor pH and its measurement. Journal of Nuclear Medicine, 2010, vol. 51, iss. 8, pp. 1167–1170. https://doi.org/10.2967/jnumed.109.068981
- Chiang P. H., Fan C. H., Jin Q., Yeh C. K. Enhancing Doxorubicin Delivery in Solid Tumor by Superhydrophobic Amorphous Calcium Carbonate-Doxorubicin Silica Nanoparticles with Focused Ultrasound. Mol. Pharmaceutics, 2022, vol. 19, iss. 11, pp. 3894–3905. https://doi.org/10.1021/acs.molpharmaceut.2c00384
- Sudareva N., Suvorova O., Saprykina N., Vlasova H., Vilesov A. Doxorubicin delivery systems based on doped CaCO3 cores and polyanion drug conjugates. J. Microencapsul, 2021, vol. 38, iss. 3, pp. 164–176. https://doi.org/10.1080/02652048.2021.1872724
- Ibiyeye K. M., Nordin N., Ajat M., Zuki A. B. Z. Ultrastructural Changes and Antitumor Effects of Doxorubicin/Thymoquinone-Loaded CaCO3 Nanoparticles on Breast Cancer Cell Line. Front Oncol., 2019, vol. 9, article no. 599. https://doi.org/10.3389/fonc.2019.00599
- Khan M. W., Zou C., Hassan S., Din F. U. Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO3 nanoparticles for synergistic chemotherapy. RSC Advances, 2022, vol. 12, iss. 23, pp. 14808–14818. https://doi.org/10.1039/d2ra00742h
- Zhao P., Li M., Chen Y., He C., Zhang X., Fan T., Yang T., Lu Y., Lee R. J., Ma X., Luo J., Xiang G. Selenium-doped calcium carbonate nanoparticles loaded with cisplatin enhance efficiency and reduce side effects. International Journal of Pharmaceutics, 2019, vol. 570, article no. 118638. https://doi.org/10.1016/j.ijpharm. 2019.118638
- Hammadi N. I., Abba Y., Hezmee M. N. M., Razak I. S. A., Kura A. U., Zakaria Z. A. B. Evaluation of in vitro efficacy of docetaxel-loaded calcium carbonate aragonite nanoparticles (DTX–CaCO3NP) on 4T1 mouse breast cancer cell line. In Vitro Cellular & Developmental Biology, 2017, vol. 53, iss. 10, pp. 896–907. https://doi.org/10.1007/s11626-017-0197-3
- Qiu N., Yin H., Ji B., Klauke N., Glidle A., Zhang Y., Song H., Cai L., Ma L., Wang G., Chen L., Wang W. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin. Materials Science and Engineering : C, 2012, vol. 32, iss. 8, pp. 2634–2640. https://doi.org/10.1016/j.msec.2012.08.026
- Dong Q., Li J., Cui L., Jian H., Wang A., Bai S. Using porous CaCO3/hyaluronic acid nanocages to accommodate hydrophobic photosensitizer in aqueous media for photodynamic therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, vol. 516, pp. 190–198. https://doi.org/10.1016/j.colsurfa.2016.12.027
- Svenskaya Y. I., Pavlov A. M., Gorin D. A., Gould D. J., Parakhonskiy B. V., Sukhorukov G. B. Photodynamic therapy platform based on localized delivery of photosensitizer by vaterite submicron particles. Colloids and Surfaces B: Biointerfaces, 2016, vol. 146, pp. 171–179. https://doi.org/10.1016/j.colsurfb.2016.05.090
- Zhao P., Tian Y., You J., Hu X. Recent Advances of Calcium Carbonate Nanoparticles for Biomedical Applications. Bioengineering, 2022, vol. 9, iss. 11, article no. 691. https://doi.org/10.3390/bioengineering9110691
- Trofimov A. D., Ivanova A. A., Zyuzin M. V., Timin A. S. Porous Inorganic Carriers Based on Silica, Calcium Carbonate and Calcium Phosphate for Controlled/Modulated Drug Delivery: Fresh Outlook and Future Perspectives. Pharmaceutics, 2018, vol. 10, iss. 4, article no. 167. https://doi.org/10.3390/pharmaceutics10040167
- Izquierdo M. A., Vyšniauskas A., Lermontova S. A., Grigoryev I. S., Shilyagina N. Y., Balalaeva I. V., Klapshina L. G., Kuimova M. K. Dual use of porphyrazines as sensitizers and viscosity markers in photodynamic therapy. Journal of Materials Chemistry B, 2015, vol. 3, iss. 6, pp. 1089–1096. https://doi.org/10.1039/C4TB01678E
- Lermontova S. A., Grigor’ev I. S., Peskova N. N., Ladilina E. Y., Balalaeva I. V., Klapshina L. G., Boyarskii V. P. New promising porphyrazine-based agents for optical theranostics of cancer. Russian Journal of General Chemistry, 2017, vol. 87, iss. 3, pp. 479–484. https://doi.org/10.1134/S1070363217030173
- Trushina D. B., Bukreeva T. V., Antipina M. N. Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles. Crystal Growth & Design, 2016, vol. 16, iss. 3, pp. 1311–1319. https://doi.org/10.1021/acs.cgd.5b01422
- Shilyagina N. Y., Plekhanov V., Shkunov I. V., Shilyagin P. A., Dubasova L. V., Brilkina А. А., Sokolova Е. А., Turchin I. V., Balalaeva I. V. LED Light Source for in vitro Study of Photosensitizing Agents for Photodynamic Therapy. Sovremennye tekhnologii v meditsine, 2014, vol. 6, iss. 12, pp. 15–22.
- Trushina D. B., Borodina T. N., Artemov V. V., Bukreeva T. V. Immobilization of Photoditazine on Vaterite Porous Particles and Analysis of the System Stability in Model Media. Technical Physics, 2018, vol. 63, iss. 9, pp. 1345–1351. https://doi.org/10.1134/S1063784218090220
- Svenskaya Y., Parakhonskiy B., Haase A., Atkin V., Lukyanets E., Gorin D., Antolini R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys. Chem., 2013, vol. 182, pp. 11–15. https://doi.org/10.1016/j.bpc.2013.07.006
- Svenskaya Y. I., Navolokin N. A., Bucharskaya A. B., Terentyuk G. S., Kuz’mina A. O., Burashnikova M. M., Maslyakova G. N., Lukyanets E. A., Gorin D. A. Calcium carbonate microparticles containing a photosensitizer photosens: Preparation, ultrasound stimulated dye release, and in vivo application. Nanotechnologies in Russia, 2014, vol. 9, iss. 7, pp. 398–409. https://doi.org/10.1134/S1995078014040181
- Correia J. H., Rodrigues J. A., Pimenta S., Dong T., Yang Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics, 2021, vol. 13, iss. 9, article no. 1332. https://doi.org/10.3390/pharmaceutics13091332
- Piskorz J., Lijewski S., Gierszewski M., Gorniak K., Sobotta L., Wicher B., Tykarska E., Düzgüneє N., Konopka K., Sikorski M., Gdaniec M., Mielcarek J., Goslinski T. Sulfanyl porphyrazines: Molecular barrel-like self-assembly in crystals, optical properties and in vitro photodynamic activity towards cancer cells. Dyes and Pigments, 2017, vol. 136, pp. 898–908. https://doi.org/10.1016/j.dyepig.2016.09.054
- Wieczorek E., Mlynarczyk D. T., Kucinska M., Dlugaszewska J., Piskorz J., Popenda L., Szczolko W., Jurga S., Murias M., Mielcarek J., Goslinski T. Photophysical properties and photocytotoxicity of free and liposome-entrapped diazepinoporphyrazines on LNCaP cells under normoxic and hypoxic conditions. European Journal of Medicinal Chemistry, 2018, vol. 150, pp. 64–73. https://doi.org/10.1016/j.ejmech.2018.02.064
- Piskorz J., Konopka K., Düzgüneş N., Gdaniec Z., Mielcarek J., Goslinski T. Diazepinoporphyrazines containing peripheral styryl substituents and their promising nanomolar photodynamic activity against oral cancer cells in liposomal formulations // ChemMedChem. 2014. Vol. 9, iss. 8. P. 1775–1782. https://doi.org/10.1002/cmdc.201402085
- Krasnopeeva E. L., Melenevskaya E. Y., Klapshina L. G., Shilyagina N. Y., Balalaeva I. V., Smirnov N. N., Smirnov M. A., Yakimansky A. V. Poly(methacrylic Acid)-Cellulose Brushes as Anticancer Porphyrazine Carrier. Nanomaterials, 2021, vol. 11, iss. 8, article no. 1997. https://doi.org/10.3390/nano11081997
- Synatschke C. V., Nomoto T., Cabral H., Förtsch M., Toh K., Matsumoto Y., Miyazaki K., Hanisch A., Schacher F. H., Kishimura A., Nishiyama N., Müller A. H., Kataoka K. Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy. ACS Nano, 2014, vol. 8, iss. 2, pp. 1161–1172. https://doi.org/10.1021/nn4028294
- 891 reads