Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Хлебцов Б. Н., Ханадеев В. А., Пылаев Т. Е., Хлебцов Н. Г. Метод динамического рассеяния света в исследованиях силикатных и золотых наночастиц // Известия Саратовского университета. Новая серия. Серия: Физика. 2017. Т. 17, вып. 2. С. 71-84. DOI: 10.18500/1817-3020-2017-17-2-71-84

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 355)
Язык публикации: 
русский
УДК: 
535.36+541.182.535.36

Метод динамического рассеяния света в исследованиях силикатных и золотых наночастиц

Авторы: 
Хлебцов Борис Николаевич, ФГБУН институт биохимии и физиологии растений и микроорганизмов Российской академии наук
Ханадеев Виталий Андреевич, ФГБУН институт биохимии и физиологии растений и микроорганизмов Российской академии наук
Пылаев Тимофей Евгеньевич, Саратовский государственный медицинский университет им. В. И. Разумовского
Хлебцов Николай Григорьевич, ФГБУН институт биохимии и физиологии растений и микроорганизмов Российской академии наук
Аннотация: 

Обсуждается применение метода динамического рассеяния света (ДРС) для определения размеров силикатных и коллоидных золотых наночастиц с использованием приборов Zetasizer Nano ZS (Malvern, UK) и PhotoCor («PhotoCor», Россия). Показано, что средние ДРС диаметры наносфер диоксида кремния (от 50 до 1000 нм) находятся в хорошем согласии с данными трансмиссионной электронной микроскопии (ТЭМ), однако ДРС рас- пределение по размерам обычно уширено по сравнению с данными ТЭМ. Для сильно рассеивающих золотых наночастиц (ЗНЧ) с диаметром более 30–40 нм отличие их формы от сферической и влияние вращательной диффузии приводит к появлению ложного пика в области размеров около 5–10 нм. В этом случае некритическое использование метода ДРС может дать неприемлемые результаты для распределений по объему или числу частиц по сравнению с данными ТЭМ. Для поглощающих ЗНЧ с диаметром менее 20 нм и слабым рассеянием метод ДРС часто дает второй ложный пик в распределении интенсивностей в области больших размеров. Обсуждаются практические методы решения проблемы ложных пиков. 

Список источников: 

1. Cummins H. Z., Pike E. R. Photon Correlation and Light Beating Spectroscopy. NATO Advanced Study Institutes Series. New York : Plenum Press, 1974. 584 p.

2. Pecora R. Dynamic Light Scattering. Applications of Photon Crrelation Spectroscopy. N.Y. ; L. : Plenum Press, 1985. 420 p.

3. Meyer W. V., Smart A. E., Wegdam G. H., Brown R. G. W. Photon correlation and scattering : introduction to the feature issue // Appl. Opt. 2006. Vol. 45. P. 2149−2154.

4. Tikhonov A. N., Goncharsky A. V., Stepanov V. V., Yagola A. G. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht : Kluwer Academic Publ., 1995. 254 p.

5. Khlebtsov N. G. On the dependence of the light scattering intensity on the averaged size of polydisperse particles : comments on the paper by M. S. Dyuzheva et al. (Colloid J. 2002. Vol. 64, no. 1, p. 39) // Colloid J. 2003. Vol. 65, № 5. P. 652−655. URL: http://link.springer.com/article/10.1023/A:1026148512418

6. Berne B. J., Pecora R. Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Mineola. N.Y. : Dover Publ., 2000. 384 p.

7. Roebben G., Ramirez-Garcia S., Hackley V. A., Roesslein M., Klaessig F., Kestens V., Lynch I., Garner C. M., Rawle A., Elder A., Colvin V. L., Kreyling W., Krug H. F., Lewicka, Z. A., McNeil S., Nel A., Patri A., Wick P., Wiesner M., Xia T., Oberdörster G., Dawson K. A. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment // J. Nanopart. Res. 2011. Vol. 13. P. 2675−2687.

8. Lamberty A., Franks K., Braun A., Kestens V., Roebben G., Linsinger T. P. J. Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension // J. Nanopart. Res. 2011. Vol. 13. P. 7317−7329.

9. Pierre-Pierre N., Huo Q. Dynamic light scattering coupled with gold nanoparticle probes as a powerful sensing technique for chemical and biological target detection // ACS Symp. Ser. 2015. Vol. 1215. P. 157−179.

10. Speed D., Westerhoff P., Sierra-Alvarez R., Draper R., Pantano P., Aravamudhan S., Chen K.L., Hristovski K., Herckes P., Bi X., Yang Y., Zeng C., Otero-Gonzalez L., Mikoryak C., Wilson B.A., Kosaraju K., Tarannum M., Crawford S., Yi P., Liu X., Babu S. V., Moinpour M., Ranville J., Montano M., Corredor C., Posner J., Shadman F. Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry : Towards environmental health and safety assessments // Environ. Sci. : Nano. 2015. Vol. 2. P. 227−244.

11. Gambinossi F., Mylon S. E., Ferri J. K. Aggregation kinetics and colloidal stability of functionalized nanoparticles // Adv. Colloid Interfac. 2015. Vol. 222. P. 332−349.

12. Zhu X., Li J., He H., Huang M., Zhang X., Wang S. Application of nanomaterials in the bioanalytical detection of disease-related genes // Biosens. Bioelectron. 2015. Vol. 74. P. 113−133.

13. Zheng T., Bott S., Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation // ACS Appl. Mater. Inter. 2016. Vol. 8. P. 21585−21594.

14. Siddiqi K. S., Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system // J. Trace Elem. Med. Bio. 2017. Vol. 40. P. 10−23.

15. Дыкман Л. А., Богатырев В. А., Щеголев С. Ю., Хлеб- цов Н. Г. Золотые наночастицы : Синтез, свойства, биомедицинское применение. М. : Наука, 2008. 128 с.

16. Khlebtsov N. G., Dykman L. A. Optical properties and biomedical applications of plasmonic nanoparticles // J. Quant. Spectrosc. Radiat. Transfer. 2010. Vol. 111. P. 1−35.

17. Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications : Recent advances and perspecti - ves // Chem. Soc. Rev. 2012. Vol. 41. P. 2256−2282.

18. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Khlebtsov B. N., Englebienne P. A multilayer model for gold nanoparticle bioconjugates : application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method // Colloid J. 2003. Vol. 65. P. 622−635.

19. Jans H., Liu X., Austin L., Maes G., Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies // Anal. Chem. 2009. Vol. 81. P. 9425−9432.

20. Kalluri J. R., Arbneshi T., Khan S. A., Neely A., Candice P., Varisli B. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: Selective detection of arsenic in groundwater // Angew. Chem. Int. Ed. 2009. Vol. 48. P. 9668−9671.

21. Bell N. C., Minelli C., Shard A. G. Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement // Anal. Methods. 2013. Vol. 5. P. 4591−4601.

22. Alex S. A., Chakraborty D., Chandrasekaran N., Mukherjee A. A comprehensive investigation of the differential interaction of human serum albumin with gold nanoparticles based on the variation in morphology and surface functionalization // RSC Adv. 2016. Vol. 6. P. 52683−52694.

23. Sutariya P. G., Pandya A., Lodha A., Menon S. K. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles // Talanta. 2016. Vol. 147. P. 590−597. http://dx.doi.org/10.1016/j.talanta.2015.10.029

24. Liu X., Huo Q. A washing-free and amplifi cation-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering // J. Immunol. Methods. 2009. Vol. 349. P. 38−44.

25. Miao X., Zou S., Zhang H., Ling L. Highly sensitive carcinoembryonic antigen detection using Ag@Au coreshell nanoparticles and dynamic light scattering // Sens. Actuators, B. 2014. Vol. 191. P. 396−400.

26. Witten K. G. , Bretschneider J. C. , Eckert T., Richtering W., Simon U. Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering // Phys. Chem. Chem. Phys. 2008. Vol. 10, № 14. P. 1870–1875.

27. Dynamic Light Scattering (DLS), Malvern, UK. URL: http://www.malvern.com/en/products/technology/dynamic-light-scattering/d... (дата обращения: 04.01.2017).

28. Khlebtsov B. N., Khlebtsov N. G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method // Colloid J. 2011. Vol. 73. P. 118–127.

29. Khlebtsov B. N., Khanadeev V. A., Khlebtsov N. G. Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra // Langmuir. 2008. Vol. 24. P. 8964−8970.

30. Khanadeev V. A., Khlebtsov B. N., Khlebtsov N. G. Optical properties of gold nanoshells on monodisperse silica cores: experiment and simulations // J. Quant. Spectrosc. Radiat. Transfer. 2017. Vol. 187. P. 1−9.

31. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Melnikov A. G. Spectral extinction of colloidal gold and its biospecifi c conjugates // J. Colloid Interface Sci. 1996. Vol. 180. P. 436−445.

32. Haiss W., Thanh N. T. K., Aveard J., Fernig D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra // Anal. Chem. 2007. Vol. 79. P. 4215−4221.

33. Njoki P. N., Lim I.-I. S., Mott D., Park H.-Y., Khan B., Mishra S., Sujakumar R., Luo J., Zhong C.-J. Size correlation of optical and spectroscopic properties for gold nanoparticles // J. Phys. Chem. B. 2007. Vol. 111. P. 14664−14669.

34. Khlebtsov N. G. Determination of size and concentration of gold nanoparticles from extinction spectra // Anal. Chem. 2008. Vol. 80, № 17. P. 6620−6625.

35. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range // J. Colloid Interfac Sci. 1968. Vol. 26. P. 62–69.

36. Hartlen K. D., Athanasopoulos A. P. T., Kitaev V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays // Langmuir. 2008. Vol. 24. P. 1714–1720. 

37. Khanadeev V. A., Khlebtsov B. N., Klimova S. A., Tsvet kov M. Y., Bagratashvili V. N., Sukhorukov G. B., Khlebtsov N. G. Large-scale high-quality 2D silica crystals : dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis // Nanotechnology. 2014. Vol. 25. P. 405602 (13 p).

38. Khlebtsov N. G. Optics and biophotonics of nanoparticles // Quantum Electron. 2008. Vol. 38. P. 504−529.

39. Brown K. R., Walter D. G., Natan M. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape // J. Chem. Mater. 2000. Vol. 12. P. 306−313.

40. Van der Zande B. M. I., Dhont Jan K. G., Bohmer Marcel R., Philipse A. P. Colloidal dispersions of gold rods characterized by dynamic light scattering and electrophoresis // Langmuir. 2000. Vol. 16. P. 459−464.

41. Rodríguez-Fernández J., Pérez-Juste J., Liz-Marzán L. M., Lang P. R. Dynamic light scattering of short Au rods with low aspect ratios // J. Phys. Chem. C. 2007. Vol. 111. P. 5020−5025.

Краткое содержание:
(загрузок: 187)