Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Кузнецов А. П., Кузнецов С. П., Тюрюкина Л. В. Сложная динамика и хаос в модельной системе Рабиновича–Фабриканта // Известия Саратовского университета. Новая серия. Серия: Физика. 2019. Т. 19, вып. 1. С. 4-18. DOI: 10.18500/1817-3020-2019-19-1-4-18

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 350)
Язык публикации: 
русский
УДК: 
517.9:621.373.7

Сложная динамика и хаос в модельной системе Рабиновича–Фабриканта

Авторы: 
Кузнецов Александр Петрович, Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
Кузнецов Сергей Петрович, Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
Тюрюкина Людмила Владимировна, Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
Аннотация: 

В работе рассматривается конечномерная трехмодовая модель нелинейного параболического уравнения, предложенная в 1979 г. М. И. Рабиновичем и А. Л. Фабрикантом и описывающая стохастичность, возникающую в результате развития модуляционной неустойчивости в неравновесной диссипативной среде со спектрально узким усилением. Как оказалось, модель Рабиновича–Фабриканта демонстрирует очень богатую динамику, обусловленную наличием в уравнениях нелинейности третьего порядка. Исследование основано на численном решении дифференциальных уравнений и численном бифуркационном анализе с помощью программы MаtCont. Для модели Рабиновича – Фабриканта построены карта динамических режимов на плоскости управляющих параметров, зависимости показателей Ляпунова от параметра, аттракторы и их бассейны притяжения. Численно найдены и построены на плоскости управляющих параметров бифуркационные линии для неподвижной точки и предельного цикла периода 1. Показано, что в исследуемой модели имеет место переход к хаосу через последовательность бифуркаций удвоения периода предельного цикла, который, в свою очередь, рождается в результате прямой бифуркации Андронова – Хопфа. Также в системе имеет место существенная мультистабильность, когда в фазовом пространстве сосуществуют аттракторы разных типов. Рассматриваемая система является универсальной, так как, хотя она и была разработана как физическая модель, описывающая стохастичность в неравновесной диссипативной среде, она может моделировать системы различной физической природы, в которых имеет место трехмодовое взаимодействие и присутствует кубическая нелинейность. Многие из этих систем имеют очевидное прикладное значение. Среди них можно выделить: волны Толлмина – Шлихтинга в гидродинамических течениях, ветровые волны на воде, волны в химических средах с диффузией, лэнгмюровские волны в плазме и т.д. Кроме того, модель Рабиновича – Фабриканта может описывать и радиотехнические системы, которые допускают как аналоговое моделирование, так и реализацию в радиотехническом устройстве.

Список источников: 

1. Рабинович М. И., Фабрикант А. Л. Стохастическая автомодуляция волн в неравновесных средах // Журнал экспериментальной и теоретической физики. 1979. Т. 77, № 2. С. 617‒629.

2. Danca M.-F., Chen G. Bifurcation and chaos in a complex model of dissipative medium // International Journal of Bifurcation and Chaos. 2004. Vol. 14, № 10. P. 3409–3447. DOI: https://doi.org/10.1142/S0218127404011430

3. Danca M.-F., Feckan M., Kuznetsov N., Chen G. Looking more closely to the Rabinovich‒Fabrikant system // International Journal of Bifurcation and Chaos. 2016. Vol. 26, № 2. P. 1650038. DOI: https://doi.org/10.1142/S0218127416500383

4. Liu Y., Yang Q., Pang G. A hyperchaotic system from the Rabinovich system // Journal of Computational and Applied Mathematics. 2010. Vol. 234, № 1. P. 101‒113. DOI: https://doi.org/10.1016/j.cam.2009.12.008

5. Agrawal S. K., Srivastava M., Das S. Synchronization between fractional-order Ravinovich‒Fabrikant and Lotka‒Volterra systems // Nonlinear Dynamics. 2012. Vol. 69, № 4. P. 2277‒2288. DOI: https://doi.org/10.1007/s11071-012-0426-y

6. Srivastava M., Agrawal S. K., Vishal K., Das S. Chaos control of fractional order Rabinovich‒Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich‒Fabrikant system // Applied Mathematical Modelling. 2014. Vol. 38, № 13. P. 3361‒3372. DOI: https://doi.org/10.1016/j.apm.2013.11.054

7. Danca M.-F. Hidden transient chaotic attractors of Rabinovich– Fabrikant system // Nonlinear Dynamics. 2016. Vol. 86, № 2. P. 1263–1270. DOI: https://doi.org/10.1007/s11071-016-2962-3

8. Danca M.-F., Kuznetsov N., Chen G. Unusual dynamics and hidden attractors of the Rabinovich – Fabrikant system // Nonlinear Dynamics. 2017. Vol. 88, № 1. P. 791‒805. DOI: https://doi.org/10.1007/s11071-016-3276-1

9. Luo X., Small M., Danca M.-F., Chen G. On a dynamical system with multiple chaotic attractors // International Journal of Bifurcation and Chaos. 2007. Vol. 17, № 9. P. 3235–3251. DOI: https://doi.org/10.1142/S0218127407018993

10. Dutta M., Nusse H. E., Ott E., Yorke J. A. Multiple attractor bifurcations : A source of unpredictability in piecewise smooth systems // Physical Review Letters. 1999. Vol. 83, № 21. P. 4281. DOI: https://doi.org/10.1103/PhysRevLett.83.4281

11. Carroll T. L., Pecora L. M. Using multiple attractor chaotic systems for communication // Chaos : An Interdisciplinary Journal of Nonlinear Science. 1999. Vol. 9, № 2. P. 445‒451. DOI: https://doi.org/10.1063/1.166425

12. Lowenberg M. H. Bifurcation analysis of multiple attractor fl ight dynamics // Philosophical Transactions – Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences. 1998. P. 2297–2319. DOI: https://doi.org/10.1098/rsta.1998.0275

13. Zhou N. F., Luo J. W., Cai Y. J. Implementation and simulation of chaotic behavior of multiple-attractor generated by a physical pendulum // Journal-Zhejiang University-Sciences Edition. 2001. Vol. 28, № 1. P. 42‒45.

14. Lu J., Yu X., Chen G. Generating chaotic attractors with multiple merged basins of attraction : A switching piecewise-linear control approach // IEEE Transactions on Circuits and Systems I : Fundamental Theory and Applications. 2003. Vol. 50, № 2. P. 198‒207. DOI: https://doi.org/10.1109/TCSI.2002.808241

15. Lu J., Chen G., Cheng D. A new chaotic system and beyond : The generalized Lorenz-like system // International Journal of Bifurcation and Chaos. 2004. Vol. 14, № 5. P. 1507‒1537. DOI: https://doi.org/10.1142/S021812740401014X

16. Liu W., Chen G. Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor? // International Journal of Bifurcation and Chaos. 2004. Vol. 14, № 4. P. 1395–1403. DOI: https://doi.org/10.1142/S0218127404009880

17. Qi G., Du S., Chen G., Chen Z., Yuan Z. On a fourdimensional chaotic system // Chaos, Solitons & Fractals. 2005. Vol. 23, № 5. P. 1671–1682. DOI: https://doi.org/10.1016/j.chaos.2004.06.054

18. Chua L. O., Komuro M., Matsumoto T. The double scroll family // IEEE transactions on circuits and systems. 1986. Vol. 33, № 11. P. 1072–1118. DOI: https://doi.org/10.1109/TCS.1986.1085869

Краткое содержание:
(загрузок: 168)