Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Lengert E. V., Pavlov A. M. Conductive nanofibrous scaffolds for tissue engineering [Ленгерт Е. В., Павлов А. М. Проводящие нановолоконные скаффолды для тканевой инженерии] // Известия Саратовского университета. Новая серия. Серия: Физика. 2021. Т. 21, вып. 1. С. 48-57. DOI: 10.18500/1817-3020-2021-21-1-48-57, EDN: TTVLBX


Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
31.03.2021
Полный текст в формате PDF(Ru):
(загрузок: 301)
Язык публикации: 
английский
Тип статьи: 
Научная статья
УДК: 
606:616
EDN: 
TTVLBX

Conductive nanofibrous scaffolds for tissue engineering
[Проводящие нановолоконные скаффолды для тканевой инженерии]

Авторы: 
Ленгерт Екатерина Владимировна, Саратовский государственный медицинский университет им. В. И. Разумовского
Павлов Антон Михайлович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Одной из важных и активно развивающихся областей современной биомедицины является клеточная инженерия, исследующая вопросы выращивания новых и восстановления поврежденных тканей и органов, включая лечение травматических состояний. В природной среде клетки ткани находятся в микроокружении внеклеточного матрикса – трехмерной сети макромолеклу, в основном протеинов и пептидов, которая обеспечивает структурную и биохимическую поддержку. Для замены матрикса и поддержки роста и восстановления клеток в медицинских приложениях предложены различные типы искусственных скафаолдов. Морфология, а также физико-химические свойства скаффолдов влияют на все основные процессы в клетках, включая способность присоединяться, пролиферировать и дифференцироваться. Этот обзор призван кратко охаракеризовать существующие материалы и методы для создания скаффолдов, фокусируясь на структуры, получаемые методами электропрядения, а также скаффолды с проводящими структурами, которые могут быть использованы для передачи электрических сигналов к клеткам для их электростимуляции, которая улучшает функциональное восстановление определенных типов клеток, включая мускульные и нервные.

Список источников: 
  1. Akbari M., Tamayol A., Bagherifard S., Serex L., Mostafalu P., Faramarzi N., Mohammadi M. H., Khademhosseini A. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving. Advanced Healthcare Materials, 2016, vol. 5, iss. 7, pp. 751–766. DOI: https://doi.org/10.1002/adhm.201500517
  2. Lee S. J., Yoo J. J., Atala A. Fundamentals of In Situ Tissue Regeneration. In: In Situ Tissue Regeneration. Elsevier, 2016, pp. 3–17.
  3. Jiao Y., Li C., Liu L., Wang F., Liu X., Mao J., Wang L. Construction and application of textile-based tissue engineering scaffolds: A review. Biomaterials Science, 2020, vol. 8, iss. 13, pp. 3574–3600. DOI: https://doi.org/10.1039/D0BM00157K
  4. Sun A. M., Vacek I., Tai I. Microencapsulation of Living Cells and Tissues. In: M. Donbrow, ed. Microcapsules and Nanoparticles in Medicine and Pharmacy. CRC Press, 1992, pp. 315–322.
  5. Feng P., He J., Peng S., Gao C., Zhao Z., Xiong S., Shuai C. Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. Materials Science and Engineering: C, 2019, vol. 100, pp. 809–825. DOI: https://doi.org/10.1016/j.msec.2019.03.030
  6. Grayson W. L., Martens T. P., Eng G. M., Radisic M., Vunjak-Novakovic G. Biomimetic approach to tissue engineering. Seminars in Cell & Developmental Biology, 2009, vol. 20, iss. 6, pp. 665–673. DOI: https://doi.org/10.1016/j.semcdb.2008.12.008
  7. Dvir T., Timko B. P., Kohane D. S., Langer R. Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 2011, vol. 6, iss. 1, pp. 13–22. DOI: https://doi.org/10.1038/nnano.2010.246
  8. Custódio C. A., Reis R. L., Mano J. F. Engineering Biomolecular Microenvironments for Cell Instructive Biomaterials. Advanced Healthcare Materials, 2014, vol. 3, iss. 6, pp. 797–810. DOI: https://doi.org/10.1002/adhm.201300603
  9. Hou Q., Grijpma D. W., Feijen J. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 2003, vol. 24, iss. 11, pp. 1937–1947. DOI: https://doi.org/10.1016/S0142-9612(02)00562-8
  10. Fereshteh Z., Fathi M., Bagri A., Boccaccini A. R. Preparation and characterization of aligned porous PCL/ zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Materials Science and Engineering: C, 2016, vol. 68, pp. 613–622. DOI: https://doi.org/10.1016/j.msec.2016.06.009
  11. Kim S.-S., Sun Park M., Jeon O., Yong Choi C., Kim B.-S. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, 2006, vol. 27, iss. 8, pp. 1399–1409. DOI: https://doi.org/10.1016/j.biomaterials.2005.08.016
  12. Lou T., Wang X., Song G., Gu Z., Yang Z. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. International Journal of Biological Macromolecules, 2014, vol. 69, pp. 464–470. DOI: https://doi.org/10.1016/j.ijbiomac.2014.06.004
  13. Bao M., Lou X., Zhou Q., Dong W., Yuan H., Zhang Y. Electrospun Biomimetic Fibrous Scaffold from Shape Memory Polymer of PDLLA- co -TMC for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2014, vol. 6, iss. 4, pp. 2611–2621. DOI: https://doi.org/10.1021/am405101k
  14. Sliogeryte K., Botto L., Lee D. A., Knight M. M. Chondrocyte dedifferentiation increases cell stiffness by strengthening membrane-actin adhesion. Osteoarthritis and Cartilage, 2016, vol. 24, iss. 5, pp. 912–920. DOI: https://doi.org/10.1016/j.joca.2015.12.007
  15. Shadjou N., Hasanzadeh M., Khalilzadeh B. Graphene based scaffolds on bone tissue engineering. Bioengineered, 2018, vol. 9, iss. 1, pp. 38–47. DOI: https://doi.org/10.1080/21655979.2017.1373539
  16. Ning L., Sun H., Lelong T., Guilloteau R., Zhu N., Schreyer D. J., Chen X. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication, 2018, vol. 10, iss. 3, pp. 035014. DOI: https://doi.org/10.1088/1758-5090/aacd30
  17. Balgude A. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials, 2001, vol. 22, iss. 10, pp. 1077–1084. DOI: https://doi.org/10.1016/S0142-9612(00)00350-1
  18. Gu Y., Zhu J., Xue C., Li Z., Ding F., Yang Y., Gu X. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials, 2014, vol. 35, iss. 7, pp. 2253–2263. DOI: https://doi.org/10.1016/j.biomaterials.2013.11.087
  19. Zha F., Chen W., Zhang L., Yu D. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2020, vol. 31, iss. 4, pp. 519–548. DOI: https://doi.org/10.1080/09205063.2019.1697170
  20. Sun S., Titushkin I., Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, vol. 69, iss. 2, pp. 133–141. DOI: https://doi.org/10.1016/j.bioelechem.2005.11.007
  21. Ghasemi-Mobarakeh L., Prabhakaran M. P., Morshed M., Nasr-Esfahani M. H., Baharvand H., Kiani S., AlDeyab S. S., Ramakrishna S. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, vol. 5, iss. 4, pp. e17–e35. DOI: https://doi.org/10.1002/term.383
  22. Huang Y., Li Y., Chen J., Zhou H., Tan S. Electrical Stimulation Elicits Neural Stem Cells Activation: New Perspectives in CNS Repair. Frontiers in Human Neuroscience, 2015, vol. 9, pp. 1‒9. DOI: https://doi.org/10.3389/fnhum.2015.00586
  23. Ning L., Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnology Journal, 2017, vol. 12, iss. 8, pp. 1600671. DOI: https://doi.org/10.1002/biot.201600671
  24. Drury J. L., Mooney D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 2003, vol. 24, iss. 24, pp. 4337–4351. DOI: https://doi.org/10.1016/S0142-9612(03)00340-5
  25. Dorati R., DeTrizio A., Modena T., Conti B., Benazzo F., Gastaldi G., Genta I. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals, 2017, vol. 10, iss. 4, pp. 96. DOI: https://doi.org/10.3390/ph10040096
  26. Chen Z., Yan X., Yin S., Liu L., Liu X., Zhao G., Ma W., Qi W., Ren Z., Liao H., Liu M., Cai D., Fang H. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering: C, 2020, vol. 106, pp. 110289. DOI: https://doi.org/10.1016/j.msec.2019.110289
  27. Lee J., Manoharan V., Cheung L., Lee S., Cha B.-H., Newman P., Farzad R., Mehrotra Sh., Zhang K., Khan F., Ghaderi M., Yi-Dong Lin, Aftab S., Mostafalu P., Miscuglio M., Li J., Biman B. Mandal, Mohammad Asif Hussain, Kai-tak Wan, Xiaowu Shrley Tang, Ali Khademhosseini, Su Ryon Shin. Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering. ACS Nano, 2019, vol. 13, iss. 11, pp. 12525–12539. DOI: https://doi.org/10.1021/acsnano.9b03050
  28. Ma P., Wei G.Polymer/Ceramic Composite Scaffolds for Bone Tissue Engineering. In: P. X. Ma, J. Elisseeff, eds. Scaffolding in Tissue Engineering. CRC Press, 2005, pp. 241–251.
  29. Misra S. K., Boccaccini A. R. Biodegradable and bioactive polymer/ceramic composite scaffolds. In: A. R. Boccacini, J. E. Gough, eds. Tissue Engineering Using Ceramics and Polymers. Woodhead Publishing, 2007, pp. 72–92.
  30. Huang B., Caetano G., Vyas C., Blaker J., Diver C., Bártolo P. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate. Materials, 2018, vol. 11, iss. 1, pp. 129. DOI: https://doi.org/10.3390/ma11010129
  31. Tiwari S., Patil R., Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers, 2018, vol. 11, iss. 1, pp. 1. DOI: https://doi.org/10.3390/polym11010001
  32. Lee K. Y., Jeong L., Kang Y. O., Lee S. J., Park W. H. Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 2009, vol. 61, iss. 12, pp. 1020–1032. DOI: https://doi.org/10.1016/j.addr.2009.07.006
  33. Spearman B. S., Agrawal N. K., Rubiano A., Simmons C. S., Mobini S., Schmidt C. E. Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications. Journal of Biomedical Materials Research Part A, 2020, vol. 108, iss. 2, pp. 279–291. DOI: https://doi.org/10.1002/jbm.a.36814
  34. Ji Y., Ghosh K., Shu X., Li B., Sokolov J., Prestwich G., Clark R., Rafailovich M. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials, 2006, vol. 27, iss. 20, pp. 3782–3792. DOI: https://doi.org/10.1016/j.biomaterials.2006.02.037
  35. Gonçalves de Pinho A. R., Odila I., Leferink A., van Blitterswijk C., Camarero-Espinosa S., Moroni L. Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2019, vol. 7, pp. 231. DOI: https://doi.org/10.3389/fbioe.2019.00231
  36. Maghdouri-White Y., Petrova S., Sori N., Polk S., Wriggers H., Ogle R., Ogle R., Francis M. Electrospun silk-collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomedical Physics & Engineering Express, 2018, vol. 4, iss. 2, pp. 025013. DOI: https://doi.org/10.1088/2057-1976/aa9c6f
  37. Jia W., Gungor-Ozkerim P. S., Zhang Y. S., Yue K., Zhu K., Liu W., Pi Q., Byambaa B., Dokmeci M. R., Shin S. R., Khademhosseini A. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 2016, vol. 106, pp. 58–68. DOI: https://doi.org/10.1016/j.biomaterials.2016.07.038
  38. Hardy J. G., Lee J. Y., Schmidt C. E. Biomimetic conducting polymer-based tissue scaffolds. Current Opinion in Biotechnology, 2013, vol. 24, iss. 5, pp. 847–854. DOI: https://doi.org/10.1016/j.copbio.2013.03.011
  39. Gerardo-Nava J., Führmann T., Klinkhammer K., Seiler N., Mey J., Klee D., Möller M., Dalton P. D., Brook G. A. Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine, 2009, vol. 4, iss. 1, pp. 11–30. DOI: https://doi.org/10.2217/17435889.4.1.11
  40. Yuan J., Shen J., Kang I.-K. Fabrication of protein-doped PLA composite nanofibrous scaffolds for tissue engineering. Polymer International, 2008, vol. 57, iss. 10, pp. 1188–1193. DOI: https://doi.org/10.1002/pi.2463
  41. Mcdonald D., Cheng C., Chen Y., Zochodne D. Early events of peripheral nerve regeneration. Neuron Glia Biology, 2006, vol. 2, iss. 2, pp. 139–147. DOI: https://doi.org/10.1017/S1740925X05000347
  42. Tomaskovic-Crook E., Gu Q., Rahim S. N. A., Wallace G. G., Crook J. M. Conducting Polymer Mediated Electrical Stimulation Induces Multilineage Differentiation with Robust Neuronal Fate Determination of Human Induced Pluripotent Stem Cells. Cells, 2020, vol. 9, iss. 3, pp. 658. DOI: https://doi.org/10.3390/cells9030658
  43. Chan E. W. C., Bennet D., Baek P., Barker D., Kim S., Travas-Sejdic J. Electrospun Polythiophene Phenylenes for Tissue Engineering. Biomacromolecules, 2018, vol. 19, iss. 5, pp. 1456–1468. DOI: https://doi.org/10.1021/acs.biomac.8b00341
  44. Zhou Z., Liu X., Wu W., Park S., Miller II A. L., Terzic A., Lu L. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomaterials Science, 2018, vol. 6, iss. 9, pp. 2375–2385. DOI: https://doi.org/10.1039/C8BM00553B
  45. Huang L., Hu J., Lang L., Wang X., Zhang P., Jing X., Wang X., Chen X., Lelkes P. I., MacDiarmid A. G. Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials, 2007, vol. 28, iss. 10, pp. 1741–1751. DOI: https://doi.org/10.1016/j.biomaterials.2006.12.007
  46. Lins L. C., Wianny F., Livi S., Hidalgo I. A., Dehay C., Duchet-Rumeau J., Gérard J.-F. Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules, 2016, vol. 17, iss. 10, pp. 3172–3187. DOI: https://doi.org/10.1021/acs.biomac.6b00820
  47. Khorshidi S., Solouk A., Mirzadeh H., Mazinani S., Lagaron J. M., Sharifi S., Ramakrishna S. A review of key challenges of electrospun scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, vol. 10, iss. 9, pp. 715–738. DOI: https://doi.org/10.1002/term.1978
  48. Hell A. F., Simbara M. M. O., Rodrigues P., Kakazu D. A., Malmonge S. M. Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system. Research on Biomedical Engineering, 2018, vol. 34, iss. 3, pp. 273–278. DOI: https://doi.org/10.1590/2446-4740.180039
  49. Torricelli P., Gioffrè M., Fiorani A., Panzavolta S., Gualandi C., Fini M., Focarete M. L., Bigi A. Co-electrospun gelatin-poly(l-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition. Materials Science and Engineering: C, 2014, vol. 36, pp. 130–138. DOI: https://doi.org/10.1016/j.msec.2013.11.050
  50. Teixeira M. A., Amorim M. T. P., Felgueiras H. P. Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers, 2019, vol. 12, iss. 1, pp. 7. DOI: https://doi.org/10.3390/polym12010007
  51. Sadeghi A., Pezeshki-Modaress M., Zandi M. Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: Fabrication and in vitro evaluation. International Journal of Biological Macromolecules, 2018, vol. 114, pp. 1248–1256. DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.002
  52. Wolf K., te Lindert M., Krause M., Alexander S., te Riet J., Willis A. L., Hoffman R. M., Figdor C. G., Weiss S. J., Friedl P. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. The Journal of Cell Biology, 2013, vol. 201, iss. 7, pp. 1069–1084. DOI: https://doi.org/10.1083/jcb.201210152
  53. Akino K., Akita S., Yakabe A., Mineda T., Hayashi T., Hirano A. Human mesenchymal stem cells may be involved in keloid pathogenesis. International Journal of Dermatology, 2008, vol. 47, iss. 11, pp. 1112–1117. DOI: https://doi.org/10.1111/j.1365-4632.2008.03380.x
  54. Zander N. E., Orlicki J. A., Rawlett A. M., Beebe T. P. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. Journal of Materials Science: Materials in Medicine, 2013, vol. 24, iss. 1, pp. 179–187. DOI: https://doi.org/10.1007/s10856-012-4771-7
  55. Torres-Giner S., Gimeno-Alcañiz J. V., Ocio M. J., Lagaron J. M. Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 2011, vol. 122, iss. 2, pp. 914–925. DOI: https://doi.org/10.1002/app.34208
  56. Pei B., Wang W., Fan Y., Wang X., Watari F., Li X. Fiberreinforced scaffolds in soft tissue engineering. Regenerative Biomaterials, 2017, vol. 4, iss. 4, pp. 257–268. DOI: https://doi.org/10.1093/rb/rbx021
  57. Rajaram A., Chen X.-B., Schreyer D. J. Strategic Design and Recent Fabrication Techniques for Bioengineered Tissue Scaffolds to Improve Peripheral Nerve Regeneration. Tissue Engineering Part B: Reviews, 2012, vol. 18, iss. 6, pp. 454–467. DOI: https://doi.org/10.1089/ten.teb.2012.0006
  58. Nandakumar A., Barradas A., de Boer J., Moroni L., van Blitterswijk C., Habibovic P. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering. Biomatter, 2013, vol. 3, iss. 2, pp. e23705. DOI: https://doi.org/10.4161/biom.23705
  59. Grossemy S., Chan P. P. Y., Doran P. M. Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds. Integrative Biology, 2019, vol. 11, iss. 6, pp. 264–279. DOI: https://doi.org/10.1093/intbio/zyz022
  60. Rodrigues I. C. P., Woigt L. F., Pereira K. D., Luchessi A. D., Lopes É. S. N., Webster T. J., Gabriel L. P. Low-cost hybrid scaffolds based on polyurethane and gelatin. Journal of Materials Research and Technology, 2020, vol. 9, iss. 4, pp. 7777–7785. DOI: https://doi.org/10.1016/j.jmrt.2020.04.049
  61. Iberite F., Gerges I., Vannozzi L., Marino A., Piazzoni M., Santaniello T., Lenardi C., Ricotti L. Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold. Annals of Biomedical Engineering, 2020, vol. 48, iss. 2, pp. 734–746. DOI: https://doi.org/10.1007/s10439-019-02397-9
  62. Wang J., Tian L., Chen N., Ramakrishna S., Mo X. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Materials Science and Engineering: C, 2018, vol. 91, pp. 715–726. DOI: https://doi.org/10.1016/j.msec.2018.06.025
  63. Mirzaei E., Ai J., Ebrahimi-Barough S., Verdi J., Ghanbari H., Faridi-Majidi R. The Differentiation of Human Endometrial Stem Cells into Neuron-Like Cells on Electrospun PAN-Derived Carbon Nanofibers with Random and Aligned Topographies. Molecular Neurobiology, 2016, vol. 53, iss. 7, pp. 4798–4808. DOI: https://doi.org/10.1007/s12035-015-9410-0
  64. Zhu W., Ye T., Lee S.-J., Cui H., Miao S., Zhou X., Shuai D., Zhang L. G. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, vol. 14, iss. 7, pp. 2485–2494. DOI: https://doi.org/10.1016/j.nano.2017.03.018
  65. Rahmani A., Nadri S., Kazemi H. S., Mortazavi Y., Sojoodi M. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Artificial Organs, 2019, vol. 43, iss. 8, pp. 780–790. DOI: https://doi.org/10.1111/aor.13425
  66. Laforgue A., Robitaille L. Deposition of Ultrathin Coatings of Polypyrrole and Poly(3,4-ethylenedioxythiophene) onto Electrospun Nanofibers Using a Vapor-Phase Polymerization Method. Chemistry of Materials, 2010, vol. 22, iss. 8, pp. 2474–2480. DOI: https://doi.org/10.1021/cm902986g
  67. Wang L., Wu Y., Hu T., Guo B., Ma P. X. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 2017, vol. 59, pp. 68–81. DOI: https://doi.org/10.1016/j.actbio.2017.06.036
  68. Ghasemi-Mobarakeh L., Prabhakaran M. P., Morshed M., Nasr-Esfahani M. H., Ramakrishna S. Electrical Stimulation of Nerve Cells Using Conductive Nanofibrous Scaffolds for Nerve Tissue Engineering. Tissue Engineering Part A, 2009, vol. 15, iss. 11, pp. 3605–3619. DOI: https://doi.org/10.1089/ten.tea.2008.0689
  69. Green R. A., Lovell N. H., Wallace G. G., Poole-Warren L. A. Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials, 2008, vol. 29, iss. 24–25, pp. 3393–3399. DOI: https://doi.org/10.1016/j.biomaterials.2008.04.047
  70. Shi G., Rouabhia M., Meng S., Zhang Z. Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. Journal of Biomedical Materials Research Part A, 2008, vol. 84A, iss. 4, pp. 1026–1037. DOI: https://doi.org/10.1002/jbm.a.31337
Поступила в редакцию: 
03.09.2020
Принята к публикации: 
18.11.2020
Опубликована: 
31.03.2021