Для цитирования:
Lengert E. V., Pavlov A. M. Conductive nanofibrous scaffolds for tissue engineering [Ленгерт Е. В., Павлов А. М. Проводящие нановолоконные скаффолды для тканевой инженерии] // Известия Саратовского университета. Новая серия. Серия: Физика. 2021. Т. 21, вып. 1. С. 48-57. DOI: 10.18500/1817-3020-2021-21-1-48-57, EDN: TTVLBX
Conductive nanofibrous scaffolds for tissue engineering
[Проводящие нановолоконные скаффолды для тканевой инженерии]
Одной из важных и активно развивающихся областей современной биомедицины является клеточная инженерия, исследующая вопросы выращивания новых и восстановления поврежденных тканей и органов, включая лечение травматических состояний. В природной среде клетки ткани находятся в микроокружении внеклеточного матрикса – трехмерной сети макромолеклу, в основном протеинов и пептидов, которая обеспечивает структурную и биохимическую поддержку. Для замены матрикса и поддержки роста и восстановления клеток в медицинских приложениях предложены различные типы искусственных скафаолдов. Морфология, а также физико-химические свойства скаффолдов влияют на все основные процессы в клетках, включая способность присоединяться, пролиферировать и дифференцироваться. Этот обзор призван кратко охаракеризовать существующие материалы и методы для создания скаффолдов, фокусируясь на структуры, получаемые методами электропрядения, а также скаффолды с проводящими структурами, которые могут быть использованы для передачи электрических сигналов к клеткам для их электростимуляции, которая улучшает функциональное восстановление определенных типов клеток, включая мускульные и нервные.
- Akbari M., Tamayol A., Bagherifard S., Serex L., Mostafalu P., Faramarzi N., Mohammadi M. H., Khademhosseini A. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving. Advanced Healthcare Materials, 2016, vol. 5, iss. 7, pp. 751–766. DOI: https://doi.org/10.1002/adhm.201500517
- Lee S. J., Yoo J. J., Atala A. Fundamentals of In Situ Tissue Regeneration. In: In Situ Tissue Regeneration. Elsevier, 2016, pp. 3–17.
- Jiao Y., Li C., Liu L., Wang F., Liu X., Mao J., Wang L. Construction and application of textile-based tissue engineering scaffolds: A review. Biomaterials Science, 2020, vol. 8, iss. 13, pp. 3574–3600. DOI: https://doi.org/10.1039/D0BM00157K
- Sun A. M., Vacek I., Tai I. Microencapsulation of Living Cells and Tissues. In: M. Donbrow, ed. Microcapsules and Nanoparticles in Medicine and Pharmacy. CRC Press, 1992, pp. 315–322.
- Feng P., He J., Peng S., Gao C., Zhao Z., Xiong S., Shuai C. Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. Materials Science and Engineering: C, 2019, vol. 100, pp. 809–825. DOI: https://doi.org/10.1016/j.msec.2019.03.030
- Grayson W. L., Martens T. P., Eng G. M., Radisic M., Vunjak-Novakovic G. Biomimetic approach to tissue engineering. Seminars in Cell & Developmental Biology, 2009, vol. 20, iss. 6, pp. 665–673. DOI: https://doi.org/10.1016/j.semcdb.2008.12.008
- Dvir T., Timko B. P., Kohane D. S., Langer R. Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 2011, vol. 6, iss. 1, pp. 13–22. DOI: https://doi.org/10.1038/nnano.2010.246
- Custódio C. A., Reis R. L., Mano J. F. Engineering Biomolecular Microenvironments for Cell Instructive Biomaterials. Advanced Healthcare Materials, 2014, vol. 3, iss. 6, pp. 797–810. DOI: https://doi.org/10.1002/adhm.201300603
- Hou Q., Grijpma D. W., Feijen J. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 2003, vol. 24, iss. 11, pp. 1937–1947. DOI: https://doi.org/10.1016/S0142-9612(02)00562-8
- Fereshteh Z., Fathi M., Bagri A., Boccaccini A. R. Preparation and characterization of aligned porous PCL/ zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Materials Science and Engineering: C, 2016, vol. 68, pp. 613–622. DOI: https://doi.org/10.1016/j.msec.2016.06.009
- Kim S.-S., Sun Park M., Jeon O., Yong Choi C., Kim B.-S. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, 2006, vol. 27, iss. 8, pp. 1399–1409. DOI: https://doi.org/10.1016/j.biomaterials.2005.08.016
- Lou T., Wang X., Song G., Gu Z., Yang Z. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. International Journal of Biological Macromolecules, 2014, vol. 69, pp. 464–470. DOI: https://doi.org/10.1016/j.ijbiomac.2014.06.004
- Bao M., Lou X., Zhou Q., Dong W., Yuan H., Zhang Y. Electrospun Biomimetic Fibrous Scaffold from Shape Memory Polymer of PDLLA- co -TMC for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2014, vol. 6, iss. 4, pp. 2611–2621. DOI: https://doi.org/10.1021/am405101k
- Sliogeryte K., Botto L., Lee D. A., Knight M. M. Chondrocyte dedifferentiation increases cell stiffness by strengthening membrane-actin adhesion. Osteoarthritis and Cartilage, 2016, vol. 24, iss. 5, pp. 912–920. DOI: https://doi.org/10.1016/j.joca.2015.12.007
- Shadjou N., Hasanzadeh M., Khalilzadeh B. Graphene based scaffolds on bone tissue engineering. Bioengineered, 2018, vol. 9, iss. 1, pp. 38–47. DOI: https://doi.org/10.1080/21655979.2017.1373539
- Ning L., Sun H., Lelong T., Guilloteau R., Zhu N., Schreyer D. J., Chen X. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication, 2018, vol. 10, iss. 3, pp. 035014. DOI: https://doi.org/10.1088/1758-5090/aacd30
- Balgude A. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials, 2001, vol. 22, iss. 10, pp. 1077–1084. DOI: https://doi.org/10.1016/S0142-9612(00)00350-1
- Gu Y., Zhu J., Xue C., Li Z., Ding F., Yang Y., Gu X. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials, 2014, vol. 35, iss. 7, pp. 2253–2263. DOI: https://doi.org/10.1016/j.biomaterials.2013.11.087
- Zha F., Chen W., Zhang L., Yu D. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2020, vol. 31, iss. 4, pp. 519–548. DOI: https://doi.org/10.1080/09205063.2019.1697170
- Sun S., Titushkin I., Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, vol. 69, iss. 2, pp. 133–141. DOI: https://doi.org/10.1016/j.bioelechem.2005.11.007
- Ghasemi-Mobarakeh L., Prabhakaran M. P., Morshed M., Nasr-Esfahani M. H., Baharvand H., Kiani S., AlDeyab S. S., Ramakrishna S. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, vol. 5, iss. 4, pp. e17–e35. DOI: https://doi.org/10.1002/term.383
- Huang Y., Li Y., Chen J., Zhou H., Tan S. Electrical Stimulation Elicits Neural Stem Cells Activation: New Perspectives in CNS Repair. Frontiers in Human Neuroscience, 2015, vol. 9, pp. 1‒9. DOI: https://doi.org/10.3389/fnhum.2015.00586
- Ning L., Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnology Journal, 2017, vol. 12, iss. 8, pp. 1600671. DOI: https://doi.org/10.1002/biot.201600671
- Drury J. L., Mooney D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 2003, vol. 24, iss. 24, pp. 4337–4351. DOI: https://doi.org/10.1016/S0142-9612(03)00340-5
- Dorati R., DeTrizio A., Modena T., Conti B., Benazzo F., Gastaldi G., Genta I. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals, 2017, vol. 10, iss. 4, pp. 96. DOI: https://doi.org/10.3390/ph10040096
- Chen Z., Yan X., Yin S., Liu L., Liu X., Zhao G., Ma W., Qi W., Ren Z., Liao H., Liu M., Cai D., Fang H. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering: C, 2020, vol. 106, pp. 110289. DOI: https://doi.org/10.1016/j.msec.2019.110289
- Lee J., Manoharan V., Cheung L., Lee S., Cha B.-H., Newman P., Farzad R., Mehrotra Sh., Zhang K., Khan F., Ghaderi M., Yi-Dong Lin, Aftab S., Mostafalu P., Miscuglio M., Li J., Biman B. Mandal, Mohammad Asif Hussain, Kai-tak Wan, Xiaowu Shrley Tang, Ali Khademhosseini, Su Ryon Shin. Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering. ACS Nano, 2019, vol. 13, iss. 11, pp. 12525–12539. DOI: https://doi.org/10.1021/acsnano.9b03050
- Ma P., Wei G.Polymer/Ceramic Composite Scaffolds for Bone Tissue Engineering. In: P. X. Ma, J. Elisseeff, eds. Scaffolding in Tissue Engineering. CRC Press, 2005, pp. 241–251.
- Misra S. K., Boccaccini A. R. Biodegradable and bioactive polymer/ceramic composite scaffolds. In: A. R. Boccacini, J. E. Gough, eds. Tissue Engineering Using Ceramics and Polymers. Woodhead Publishing, 2007, pp. 72–92.
- Huang B., Caetano G., Vyas C., Blaker J., Diver C., Bártolo P. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate. Materials, 2018, vol. 11, iss. 1, pp. 129. DOI: https://doi.org/10.3390/ma11010129
- Tiwari S., Patil R., Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers, 2018, vol. 11, iss. 1, pp. 1. DOI: https://doi.org/10.3390/polym11010001
- Lee K. Y., Jeong L., Kang Y. O., Lee S. J., Park W. H. Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 2009, vol. 61, iss. 12, pp. 1020–1032. DOI: https://doi.org/10.1016/j.addr.2009.07.006
- Spearman B. S., Agrawal N. K., Rubiano A., Simmons C. S., Mobini S., Schmidt C. E. Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications. Journal of Biomedical Materials Research Part A, 2020, vol. 108, iss. 2, pp. 279–291. DOI: https://doi.org/10.1002/jbm.a.36814
- Ji Y., Ghosh K., Shu X., Li B., Sokolov J., Prestwich G., Clark R., Rafailovich M. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials, 2006, vol. 27, iss. 20, pp. 3782–3792. DOI: https://doi.org/10.1016/j.biomaterials.2006.02.037
- Gonçalves de Pinho A. R., Odila I., Leferink A., van Blitterswijk C., Camarero-Espinosa S., Moroni L. Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2019, vol. 7, pp. 231. DOI: https://doi.org/10.3389/fbioe.2019.00231
- Maghdouri-White Y., Petrova S., Sori N., Polk S., Wriggers H., Ogle R., Ogle R., Francis M. Electrospun silk-collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomedical Physics & Engineering Express, 2018, vol. 4, iss. 2, pp. 025013. DOI: https://doi.org/10.1088/2057-1976/aa9c6f
- Jia W., Gungor-Ozkerim P. S., Zhang Y. S., Yue K., Zhu K., Liu W., Pi Q., Byambaa B., Dokmeci M. R., Shin S. R., Khademhosseini A. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 2016, vol. 106, pp. 58–68. DOI: https://doi.org/10.1016/j.biomaterials.2016.07.038
- Hardy J. G., Lee J. Y., Schmidt C. E. Biomimetic conducting polymer-based tissue scaffolds. Current Opinion in Biotechnology, 2013, vol. 24, iss. 5, pp. 847–854. DOI: https://doi.org/10.1016/j.copbio.2013.03.011
- Gerardo-Nava J., Führmann T., Klinkhammer K., Seiler N., Mey J., Klee D., Möller M., Dalton P. D., Brook G. A. Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine, 2009, vol. 4, iss. 1, pp. 11–30. DOI: https://doi.org/10.2217/17435889.4.1.11
- Yuan J., Shen J., Kang I.-K. Fabrication of protein-doped PLA composite nanofibrous scaffolds for tissue engineering. Polymer International, 2008, vol. 57, iss. 10, pp. 1188–1193. DOI: https://doi.org/10.1002/pi.2463
- Mcdonald D., Cheng C., Chen Y., Zochodne D. Early events of peripheral nerve regeneration. Neuron Glia Biology, 2006, vol. 2, iss. 2, pp. 139–147. DOI: https://doi.org/10.1017/S1740925X05000347
- Tomaskovic-Crook E., Gu Q., Rahim S. N. A., Wallace G. G., Crook J. M. Conducting Polymer Mediated Electrical Stimulation Induces Multilineage Differentiation with Robust Neuronal Fate Determination of Human Induced Pluripotent Stem Cells. Cells, 2020, vol. 9, iss. 3, pp. 658. DOI: https://doi.org/10.3390/cells9030658
- Chan E. W. C., Bennet D., Baek P., Barker D., Kim S., Travas-Sejdic J. Electrospun Polythiophene Phenylenes for Tissue Engineering. Biomacromolecules, 2018, vol. 19, iss. 5, pp. 1456–1468. DOI: https://doi.org/10.1021/acs.biomac.8b00341
- Zhou Z., Liu X., Wu W., Park S., Miller II A. L., Terzic A., Lu L. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomaterials Science, 2018, vol. 6, iss. 9, pp. 2375–2385. DOI: https://doi.org/10.1039/C8BM00553B
- Huang L., Hu J., Lang L., Wang X., Zhang P., Jing X., Wang X., Chen X., Lelkes P. I., MacDiarmid A. G. Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials, 2007, vol. 28, iss. 10, pp. 1741–1751. DOI: https://doi.org/10.1016/j.biomaterials.2006.12.007
- Lins L. C., Wianny F., Livi S., Hidalgo I. A., Dehay C., Duchet-Rumeau J., Gérard J.-F. Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules, 2016, vol. 17, iss. 10, pp. 3172–3187. DOI: https://doi.org/10.1021/acs.biomac.6b00820
- Khorshidi S., Solouk A., Mirzadeh H., Mazinani S., Lagaron J. M., Sharifi S., Ramakrishna S. A review of key challenges of electrospun scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, vol. 10, iss. 9, pp. 715–738. DOI: https://doi.org/10.1002/term.1978
- Hell A. F., Simbara M. M. O., Rodrigues P., Kakazu D. A., Malmonge S. M. Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system. Research on Biomedical Engineering, 2018, vol. 34, iss. 3, pp. 273–278. DOI: https://doi.org/10.1590/2446-4740.180039
- Torricelli P., Gioffrè M., Fiorani A., Panzavolta S., Gualandi C., Fini M., Focarete M. L., Bigi A. Co-electrospun gelatin-poly(l-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition. Materials Science and Engineering: C, 2014, vol. 36, pp. 130–138. DOI: https://doi.org/10.1016/j.msec.2013.11.050
- Teixeira M. A., Amorim M. T. P., Felgueiras H. P. Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers, 2019, vol. 12, iss. 1, pp. 7. DOI: https://doi.org/10.3390/polym12010007
- Sadeghi A., Pezeshki-Modaress M., Zandi M. Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: Fabrication and in vitro evaluation. International Journal of Biological Macromolecules, 2018, vol. 114, pp. 1248–1256. DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.002
- Wolf K., te Lindert M., Krause M., Alexander S., te Riet J., Willis A. L., Hoffman R. M., Figdor C. G., Weiss S. J., Friedl P. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. The Journal of Cell Biology, 2013, vol. 201, iss. 7, pp. 1069–1084. DOI: https://doi.org/10.1083/jcb.201210152
- Akino K., Akita S., Yakabe A., Mineda T., Hayashi T., Hirano A. Human mesenchymal stem cells may be involved in keloid pathogenesis. International Journal of Dermatology, 2008, vol. 47, iss. 11, pp. 1112–1117. DOI: https://doi.org/10.1111/j.1365-4632.2008.03380.x
- Zander N. E., Orlicki J. A., Rawlett A. M., Beebe T. P. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. Journal of Materials Science: Materials in Medicine, 2013, vol. 24, iss. 1, pp. 179–187. DOI: https://doi.org/10.1007/s10856-012-4771-7
- Torres-Giner S., Gimeno-Alcañiz J. V., Ocio M. J., Lagaron J. M. Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 2011, vol. 122, iss. 2, pp. 914–925. DOI: https://doi.org/10.1002/app.34208
- Pei B., Wang W., Fan Y., Wang X., Watari F., Li X. Fiberreinforced scaffolds in soft tissue engineering. Regenerative Biomaterials, 2017, vol. 4, iss. 4, pp. 257–268. DOI: https://doi.org/10.1093/rb/rbx021
- Rajaram A., Chen X.-B., Schreyer D. J. Strategic Design and Recent Fabrication Techniques for Bioengineered Tissue Scaffolds to Improve Peripheral Nerve Regeneration. Tissue Engineering Part B: Reviews, 2012, vol. 18, iss. 6, pp. 454–467. DOI: https://doi.org/10.1089/ten.teb.2012.0006
- Nandakumar A., Barradas A., de Boer J., Moroni L., van Blitterswijk C., Habibovic P. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering. Biomatter, 2013, vol. 3, iss. 2, pp. e23705. DOI: https://doi.org/10.4161/biom.23705
- Grossemy S., Chan P. P. Y., Doran P. M. Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds. Integrative Biology, 2019, vol. 11, iss. 6, pp. 264–279. DOI: https://doi.org/10.1093/intbio/zyz022
- Rodrigues I. C. P., Woigt L. F., Pereira K. D., Luchessi A. D., Lopes É. S. N., Webster T. J., Gabriel L. P. Low-cost hybrid scaffolds based on polyurethane and gelatin. Journal of Materials Research and Technology, 2020, vol. 9, iss. 4, pp. 7777–7785. DOI: https://doi.org/10.1016/j.jmrt.2020.04.049
- Iberite F., Gerges I., Vannozzi L., Marino A., Piazzoni M., Santaniello T., Lenardi C., Ricotti L. Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold. Annals of Biomedical Engineering, 2020, vol. 48, iss. 2, pp. 734–746. DOI: https://doi.org/10.1007/s10439-019-02397-9
- Wang J., Tian L., Chen N., Ramakrishna S., Mo X. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Materials Science and Engineering: C, 2018, vol. 91, pp. 715–726. DOI: https://doi.org/10.1016/j.msec.2018.06.025
- Mirzaei E., Ai J., Ebrahimi-Barough S., Verdi J., Ghanbari H., Faridi-Majidi R. The Differentiation of Human Endometrial Stem Cells into Neuron-Like Cells on Electrospun PAN-Derived Carbon Nanofibers with Random and Aligned Topographies. Molecular Neurobiology, 2016, vol. 53, iss. 7, pp. 4798–4808. DOI: https://doi.org/10.1007/s12035-015-9410-0
- Zhu W., Ye T., Lee S.-J., Cui H., Miao S., Zhou X., Shuai D., Zhang L. G. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, vol. 14, iss. 7, pp. 2485–2494. DOI: https://doi.org/10.1016/j.nano.2017.03.018
- Rahmani A., Nadri S., Kazemi H. S., Mortazavi Y., Sojoodi M. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Artificial Organs, 2019, vol. 43, iss. 8, pp. 780–790. DOI: https://doi.org/10.1111/aor.13425
- Laforgue A., Robitaille L. Deposition of Ultrathin Coatings of Polypyrrole and Poly(3,4-ethylenedioxythiophene) onto Electrospun Nanofibers Using a Vapor-Phase Polymerization Method. Chemistry of Materials, 2010, vol. 22, iss. 8, pp. 2474–2480. DOI: https://doi.org/10.1021/cm902986g
- Wang L., Wu Y., Hu T., Guo B., Ma P. X. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 2017, vol. 59, pp. 68–81. DOI: https://doi.org/10.1016/j.actbio.2017.06.036
- Ghasemi-Mobarakeh L., Prabhakaran M. P., Morshed M., Nasr-Esfahani M. H., Ramakrishna S. Electrical Stimulation of Nerve Cells Using Conductive Nanofibrous Scaffolds for Nerve Tissue Engineering. Tissue Engineering Part A, 2009, vol. 15, iss. 11, pp. 3605–3619. DOI: https://doi.org/10.1089/ten.tea.2008.0689
- Green R. A., Lovell N. H., Wallace G. G., Poole-Warren L. A. Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials, 2008, vol. 29, iss. 24–25, pp. 3393–3399. DOI: https://doi.org/10.1016/j.biomaterials.2008.04.047
- Shi G., Rouabhia M., Meng S., Zhang Z. Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. Journal of Biomedical Materials Research Part A, 2008, vol. 84A, iss. 4, pp. 1026–1037. DOI: https://doi.org/10.1002/jbm.a.31337
- 1424 просмотра