Для цитирования:
Verveyko D. V., Verisokin A. Y., Lagosha S. V., Brazhe A. R. Competitive bidirectional pathways of vascular tone regulation via arachidonic acid metabolites [Вервейко Д. В., Верисокин А. Ю., Лагоша С. В., Браже А. Р. Конкурентные двунаправленные пути регуляции тонуса сосудов воздействием метаболитов арахидоновой кислоты] // Известия Саратовского университета. Новая серия. Серия: Физика. 2023. Т. 23, вып. 2. С. 141-149. DOI: 10.18500/1817-3020-2023-23-2-141-149, EDN: IWWZMM
Competitive bidirectional pathways of vascular tone regulation via arachidonic acid metabolites
[Конкурентные двунаправленные пути регуляции тонуса сосудов воздействием метаболитов арахидоновой кислоты]
Предпосылки и цели: Процессы, происходящие в каждом элементе нейроглиоваскулярной единицы, будут иметь последствия для всей структурной единицы. Астроциты продуцируют арахидоновую кислоту, и её метаболиты играют ключевую роль в нейроглиоваскулярной динамике благодаря возможности двунаправленного контроля, в частности EETs и PGE2 оказывают сосудорасширяющее действие, а 20-HETE действует как вазоконстриктор. Для учёта влияние метаболитов арахидоновой кислоты на радиус кровеносных сосудов разработана минималистическая модель нейроглиоваскулярной единицы, определяющая кровоток и активность элементов. Материалы и методы: Для проверки модели используются два сценария ее поведения, включая внешнее воздействие, приводящее к увеличению нейронального калия, и внешнее воздействие на EETs. Результаты: Предложена новая математическая модель нейроглиоваскулярной единицы, включающая в себя уравнения, описывающие IP3-зависимую кальциевую динамику в астроците, нейронную активность, васкулярную динамику с учётом синтеза арахидоновой кислоты и её производных. Проведена численная проверка работоспособности модели, показавшая, что она успешно воспроизводит известные пути регуляции активности элементов нейроглиоваскулярной единицы, связанные с влиянием метаболитов арахидоновой кислоты на тонус сосудов и опосредованно на синаптическую активность. Модель может быть использована для дальнейших теоретических исследований функционирования нервной ткани головного мозга и, в частности, механизмов перфузии.
- Kettenmann H., Hanisch U. K., Noda M., Verkhratsky A. Physiology of microglia. Physiol. Rev., 2010, vol. 91, pp. 461–553. https://doi.org/10.1152/physrev.00011.2010
- Li Z., McConnell H. L. Stackhouse T. L., Pike M. M., Zhang W., Mishra A. Increased 20-HETE signaling suppresses capillary neurovascular coupling after ischemic stroke in regions beyond the infarct. Front. Cell. Neurosci., 2021, vol. 15, article no. 762843. eCollection 2021. https://doi.org/10.3389/fncel.2021.762843
- Petzold G. C., Murthy V. N. Role of astrocytes in neurovascular coupling. Neuron, 2011, vol. 71, pp. 782–97. https://doi.org/10.1016/j.neuron.2011.08.009
- Koehler R. C., Gebremedhin D., Harder D. R. Role of astrocytes in cerebrovascular regulation. J. Appl. Physiol., 2006, vol. 100, pp. 307–317. https://doi.org/10.1152/japplphysiol.00938.2005. https://doi.org/10.1126/science.1156120
- Schummers J., Yu H., Sur M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science, 2008, vol. 320, pp. 1638–1643. https://doi.org/10.1126/science.1156120
- Shen X. Y., Gao Z. K., Han Y., Yuan M., Guo Y. S., Bi X. Activation and Role of Astrocytes in Ischemic Stroke. Front. Cell. Neurosci., 2021, vol. 15, article no. 755955. https://doi.org/10.3389/fncel.2021.755955
- Abusnaina A., Abdullah R. Spiking Neuron Models: A Review. JDCTA, 2014, vol. 8, pp. 14–21. https://doi.org/10.3390/brainsci12070863
- Manninen T., Havela R., Linne M. L. Computational Models for Calcium-Mediated Astrocyte Functions. Front. Comput. Neurosci., 2018, vol. 12, article no. 14. https://doi.org/10.3389/fncom.2018.00014
- Huneau C., Benali H., Chabriat H. Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models. Front. Neurosci., 2015, vol. 9, pp. 467. https://doi.org/10.3389/fnins.2015.00467
- Iadecola C., Yang G., Ebner T. J., Chen G. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J. Neurophysiol., 1997, vol. 78, pp. 651–659. https://doi.org/10.1152/jn.1997.78.2.651
- Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease, Neuron, 2017, vol. 96, pp. 17–42. https://doi.org/10.1016/j.neuron.2017.07.030
- Farr H., David T. Models of neurovascular coupling via potassium and EET signaling. J. Theor. Biol., 2011, vol. 286, pp. 13–23. https://doi.org/10.1016/j.jtbi.2011.07.006
- Kenny A., Plank M. J., David T. The role of astrocytic calcium and TRPV4 channels in neurovascular coupling. J. Comput. Neurosci., 2018, vol. 44, pp. 97–114. https://doi.org/10.1007/s10827-017-0671-7
- Chander B. S., Chakravarthy V. S. A computational model of neuro-glio-vascular loop interactions. PLoS ONE, 2012, vol. 7, article no. e48802. https://doi.org/10.1371/journal.pone.0048802
- Tesler F., Linne M.-L., Destexhe A. A key role of astrocytic calcium dynamics to link neuronal activity with the BOLD signal. bioRxiv, 2021, article no. 04.23.441146. https://doi.org/10.1101/2021.04.23.441146
- Nippert A., Biesecker K., Newman E. Mechanisms Mediating Functional Hyperemia in the Brain. Neuroscientist, 2018, vol. 24, pp. 73–83. https://doi.org/10.1177/1073858417703033
- Ullah G., Jung P., Cornell-Bell A. H. Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium, 2006, vol. 39, pp. 197–208. https://doi.org/10.1016/j.ceca.2005.10.009
- Verisokin A. Yu., Verveyko D. V., Postnov D. E., Brazhe A. R. Modeling of astrocyte networks: towards realistic topology and dynamics. Front. Cell. Neurosci., 2021, vol. 15, article no. 645068. https://doi.org/10.3389/fncel.2021.645068
- MacVicar B. A., Newman E. A. Astrocyte regulation of blood flow in the brain. Cold Spring Harb. Perspect. Biol., 2015, vol. 7, article no. a020388. https://doi.org/10.1101/cshperspect.a020388
- Chen K., Pittman R. N., Popel A. S. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid. Redox Signal, 2008, vol. 10, pp. 1185–1198. https://doi.org/10.1089/ars.2007.1959
- Picón-Pagès P., Garcia-Buendia J., Muñoz F. J. Functions and dysfunctions of nitric oxide in brain. Biochim. Biophys. Acta Mol. Basis Dis., 2019, vol. 1865, pp. 1949–1967. https://doi.org/10.1016/j.bbadis.2018.11.007
- Wieroсska J. M. Cieњlik P., Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxi. Biomolecules, 2021, vol. 11, no. 8, article no. 1097. https://doi.org/10.3390/biom11081097
- Chizhov A. V., Zefirov A. V., Amakhin D. V., Smirnova E. Y., Zaitsev A. V. Minimal model of interictal and ictal discharges “Epileptor-2”. PLoS Comput. Biol., 2018, vol. 14, article no. e1006186. https://doi.org/10.1371/journal.pcbi.1006186
- Cressman J. R., Ullah G. Ziburkus J., Schiff S. J., Barreto E. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J. Comput. Neurosci., 2009, vol. 26, no. 2, pp. 159–170. https://doi.org/10.1007/s10827-008-0132-4
- Jiang C., Haddad G. G. Oxygen deprivation inhibits a K+ channel independently of cytosolic factors in rat central neurons. J. Physiol., vol. 481, pp. 15–26. https://doi.org/10.1113/jphysiol.1994.sp020415
- Attwell D., Buchan A., Charpak S., Lauritzen M., MacVicar B. A., Newman E. Glial and neuronal control of brain blood flow. Nature, 2010, vol. 468, pp. 232–243. https://doi.org/10.1038/nature09613
- 762 просмотра